期刊文献+

基于单一深度图像的人体姿态实时识别技术研究 被引量:2

Human Pose Recognition Research Based on Single Depth Images
下载PDF
导出
摘要 为探索更自然、逼真的交互方式,对基于深度图像技术进行研究。介绍当前深度图像技术的应用现状以及主要研究方法;利用深度图像对人体进行识别,包括基于多幅深度图像和基于单一深度图像;对于人体姿态静态追踪,基于当前研究成果将人体部位进行分割处理,以计算机处理速率及鲁棒性为出发点,将随机森林算法应用于单一深度图像中人的定位,并提出改进方法,实现身体部位的识别以及骨骼关节点的空间位置精确标定。通过试验分析对人体深度图像识别速率及精确度方面的改进效果进行验证。 To obtain more natural and realistic interactive mode,the research based on depth image technology is carried on.The situation of depth image application and methods are introduced.The depth image is used to recognize human pose induding based on multiple depth image or single depth image.And for the static human pose tracking,random forest algorithm is used to evaluate the human position in the single depth image for improving the run rate and the robust character.Then the recognition of body position and the skeleton joint are realized.At last,an instance is provided to illustrate the effectiveness and accuracy of the method.
出处 《计算机与现代化》 2012年第4期192-195,200,共5页 Computer and Modernization
关键词 深度图像 姿态识别 随机森林 MeanShift方法 depth image human pose recognition random forest Mean Shift method
  • 相关文献

参考文献13

  • 1王晓光,苏群星.虚拟维修通用仿真软件系统的设计[J].计算机仿真,2006,23(8):266-268. 被引量:11
  • 2Yukihiro M,Toshinori Y.VR-based interactive learning environment for power plant operator[C]//Proceedings of the International Conference on Computers in Education.Washington DC:IEEE Computer Society,2002:922-923.
  • 3刘钢,彭群生,鲍虎军.基于图像建模技术研究综述与展望[J].计算机辅助设计与图形学学报,2005,17(1):18-27. 被引量:57
  • 4Rioux M.Laser range finder based on synchronized scan-ners[J].Applied Optics,1984,23(21):3837-38441.
  • 5彭翔,张宗华,朱绍明,胡小唐.基于白光数字莫尔的三维数字成像系统[J].光学学报,1999,19(10):1401-1405. 被引量:22
  • 6Salvi J,Matabosch C,Fofi D,et al.A review of recent range image regist ration methods with accuracy evaluat-ion[J].Image Vision Computer,2007,25(5):578-596.
  • 7Grest D,Woetzel J,Koch R.Nonlinear body pose estima-tion from depth images[C]//Proc.DAGM.2005:285-292.
  • 8Anguelov D,Taskar B,Chatalbashev V,et al.Discriminative learning of Markov random fields for segmentation of3D scan data[C]//Proc.CVPR’05.2005:169-176.
  • 9Kalogerakis E,Hertzmann A,Singh K.Learning3D mesh segmentation and labeling[J].ACM Transactions on Graph-ics,2010,29(3):102:1-102:12.
  • 10Plagemann C,Ganapathi V,Koller D,et al.Real-time iden-tification and localization of body parts from depth images[C]//Proc.ICRA.2010:3108-3113.

二级参考文献104

  • 1彭翔,朱绍明,高志.基于广义载波条纹图数字解调的三维形貌测量技术[J].光学学报,1995,15(10):1385-1388. 被引量:2
  • 2彭翔,高志,朱绍明,姚建铨.光学广义载波条纹图的计算机辅助分析[J].中国激光,1995,22(7):541-545. 被引量:3
  • 3彭翔,朱绍明,叶声华.含噪声及分割间断区的光学条纹图位相解码[J].中国激光,1997,24(4):352-358. 被引量:6
  • 4Bowyer K W,Flynn K C P.A survey of approaches and challenges in 3D and multi-modal 3D+2D face recognition[J].Computer Vision and Image Understanding,2006,101 : 1-15.
  • 5Ahonen T,Pietikainen A H M.Face recognition with local binary patterns[C]//ECCV,Prague, 2004:469-481.
  • 6Belhumeur P,Kriegman J H D.Eigenfaces vs.fisherfaces:Recognition using class specific linear projeetion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7) :711-720.
  • 7Snelick R,Mink U U A,Indovina M,et al.Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 ( 3 ) : 450-455.
  • 8Wong K,Hu W L Y H,Boston N,et al.Optimal linear combination of facial regions for improving identification performance[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics, 2007,37(5): 1138-1148.
  • 9Phillips P J,Scruggs P J F T,Bowyer K W,et al.Overview of the face recognition grand challenge[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'05), 2005 : 947-954.
  • 10Amenta N, Bern M, Kamvysselis M. A new Voronoi-based surface reconstruction algorithm[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Orlando, Florida, 1998. 415~420.

共引文献91

同被引文献22

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部