期刊文献+

利用图像分解和Beamlet变换的含噪图像线特征检测

Noisy Image Line Feature Detection Method via Image Decomposition and Beamlet Transform
下载PDF
导出
摘要 本文提出了一种含噪图像线特征检测算法。根据图像分解理论和Beamlet变换的特点,将含噪图像的结构和纹理进行分量进行分解,以降低噪声和纹理对线特征检测的影响,再利用Beamlet变换对图像进行线特征检测。通过对富含线特征和边缘纹理复杂的含噪图像进行实验,与Donoho的原检测算法进行了比较。实验结果表明本文算法的有效性。 This paper proposes a linear feature detection method for noisy images.According to image decomposition theory and the characteristics of beamlet transform,the structure and texture components of noisy image can be decomposed,to reduce the influence of noise and texture on line feature detection.Then the beamlet transform is applied to extract the linear feature.Compared with Donoho's method,the experiments on line-rich and complex edge natural images show that the proposed algorithm can achieve satisfactory performance in the cases of low signal-to-noise ratios.
出处 《石河子大学学报(自然科学版)》 CAS 2012年第1期125-128,共4页 Journal of Shihezi University(Natural Science)
基金 新疆兵团科技支疆项目(2008zj15)
关键词 BEAMLET变换 图像分解 特征检测 Beamlet transform image decomposition feature detection
  • 相关文献

参考文献8

  • 1David L Donoho. Wedgelets:nearly minimax estimation of edges[J].Annals of Statistics,1999,(03):859-897.
  • 2David L,Donoho,Xiaoming Huo. Beamlets and multiscale image analysis[A].Berlin:Springer-verlag,2001.149-196.
  • 3Qinfeng Shi,Yanning Zhang. Adaptive linear feature detection based on beamlet[A].Shanghai:IEEE Press,2004.3981-3984.
  • 4Xiaoming Huo,Jihong Chen. JBEAM:multiscale curve coding via beamlets[J].IEEE Transactions on Image Processing,2005,(1 1):1665-1677.
  • 5杨明,尹勇,彭玉华,周新虹.Beamlet变换与多尺度线特征提取[J].电子学报,2007,35(1):100-103. 被引量:12
  • 6王敏,张艳宁,孙瑾秋.基于线奇异性分析的图像边缘检测方法[J].光电工程,2009,36(10):129-134. 被引量:3
  • 7Meyer Y. Oscillating Patterns in image processing and nonlinear evolution equations[M].Boston:University Lecture Series,American Mathematical Society,2001.
  • 8Tadmor E,Nezzar S,Vese L. A multiscale image representation using hierarhical (BV,L2) decompositions[J].Journal of Multiscale Modeling and Simulation,2004,(04):554-579.

二级参考文献14

  • 1TORREAO Jose R A, AMARAL Marrcos S. Efficient, recursively implemented differential operator, with application to edge detection [J]. Pattern Recognition Letters(S0167-8655), 2006, 27(9): 987-995.
  • 2DEMIGNY D. On optimal linear filtering for edge detection [J]. IEEE Transactions on Image Processing(S1057-7149), 2002, 11(7): 728-737.
  • 3BAO P, ZHANG L, WU X. Canny edge detection enhancement by scale multiplication [J]. IEEE Transactions on Pattern Analysis and Machinelntelligence(S0162-8828), 2005, 6(9): 1485-1490.
  • 4MALLAT S, HWANG W L. Singularity detection and processing with wavelets [J]. IEEE Transactions on Information Theory(S0018-9448), 1992, 38(2): 617-643.
  • 5Donoho David L, HUO Xiao-ming. Beamlet pyramids: A new form of multiresolution analysis, suited for extracting lines, curves, and objects from very noisy image data [C]// Wavelet Applications in Signal And Image Processing Ⅷ, San Diego, CA, USA: July31-August4, 2000: 233-256.
  • 6Donoho David L, HUO Xiao-ming, Jermyn Ian, et al. Beamlets and multiscale image analysis [M]// Multiseale and MultiresolutionMethods. Springer, 2002, 20: 145-165.
  • 7MEI Xiao-ming, ZHANG Liang-pei, LI Ping-xiang. An Approach For Edge Detection Based on Beamlet Transform [C]//The Fourth International Conference on Image and Graphics, Sichuan, China, Aug 22-24, 2007: 353-357.
  • 8BAI Zheng-yao, HE Pei-kun. An improved ratio edge detector for target detection in SAR images[C]//The 2003 International Conference on Neural Networks and Signal Processing, Nanjing, China, Dec 14-17, 2003, 2: 982-985.
  • 9David L Donoho,Xiaoming Huo.Beamlets and multiscale image analysis[A].Multiscale and Multiresolution Methods[C].Berlin:Springer Press,2001.149-196.
  • 10Xiaoming Huo,Jihong Chen.JBEAM:multiscale curve coding via beamlets[J].IEEE Transaction on Image Processing,2005,14(11):1665-1677.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部