期刊文献+

曲线插值的一种具有还圆性的细分方法

A circle-restoring subdivision scheme for curve interpolation
下载PDF
导出
摘要 传统的线性四点插值细分方法不能表示圆等非多项式曲线,为了解决这种问题,基于几何特性提出了一种带有一个参数的四点插值型曲线细分方法。细分过程中,过相邻三插值点作圆,过相邻二插值点的圆弧有两个中点,将其加权平均得到新插值点,文中给出了插值公式和算法描述。所给方法具有还圆性,可以实现保凸性。实例分析对比了本方法与多种细分方法的差异,说明本方法是有效的,当参数取值较小时,曲线靠近控制多边形。 A geometric 4-points interpolatory subdivision scheme with a parameter is proposed to overcome the deficiency of traditional 4-points interpolatory subdivision scheme that it can not generate non-polynomial curve,for example,circle.As three adjacent points confirm a circle,there are two arcs between every two adjacent points.The new generating point is determined by weighted average of two midpoints on the arcs.Interpolation formula and algorithm are described.This subdivision scheme can be convexity-preserving and restore a circle if all initial knots are on the same circle.Examples show the difference between this scheme and some traditional schemes.As the parameter becomes smaller,limit curve gets closer to initial controlling polygon.
作者 韩靖 韩旭里
出处 《图学学报》 CSCD 北大核心 2012年第2期57-61,共5页 Journal of Graphics
基金 国家自然科学基金资助项目(60970097 10871208)
关键词 几何插值 保凸 细分 还圆 geometric interpolation convexity preserving subdivision circle-restoring
  • 相关文献

参考文献12

  • 1Chaikin G M. An algorithm for high speed curve generation[J].Computer Vision Graphics and Image Processing,1974,(04):346-349.
  • 2Riesenfeld R F. On Chainik's algorithm[J].IEEE Computer Graphices and Applications,1975,(03):304-310.
  • 3Catmull E,Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes[J].Computer-Aided Design,1978,(06):350-355.
  • 4Hassan M F,Ivrissimitzis I P,Dodgson N A. An interpolating 4-point C2 ternary sationary subdivion scheme[J].Computer Aided Geometric Design,2002,(05):1-18.
  • 5Dyna N,Levina D,Liu D. Interpolatory convexity-preserving subdivision schemes for curves and surfaces[J].Computer-Aided Design,1990,(04):221-216.
  • 6Méhautéa A L,Utreras F I. Convexity-preserving interpolatory subdivision[J].Computer Aided Geometric Design,1994,(01):17-37.
  • 7Marinov M,Dyn N,Levin D. Geometrically controlled 4-point interpolatory Schemes[A].Lodon:Springer-Verlag,2005.301-315.
  • 8Dyn N,Levin D,John A. A 4-point interpolatory subdivision scheme for curve design[J].Computer Aided Geometric Design,1987,(04):257-268.
  • 9Dubuc S. Interpolation through an iterative scheme[J].Journal of Mathematical Analysis and Applications,1986,(01):185-204.
  • 10曹沅.四点插值细分算法极限曲线曲面C^2连续的充分必要条件[J].计算机辅助设计与图形学学报,2003,15(8):961-966. 被引量:16

二级参考文献18

  • 1蔡志杰.基于离散插值的有限元素法[J].复旦学报(自然科学版),1994,33(6):608-618. 被引量:2
  • 2蒋尔雄 高坤敏.线性代数[M].北京:人民教育出版社,1978..
  • 3丁立.区间上的变参数四点法曲线的凸性[J].计算机辅助设计与图形学学报,1996,8:148-153.
  • 4Ohtake Y, Belyaev A, Seidel H P. lnterpolatory subdivision curves via diffusion of normals [C] //Proceedings of the Computer Graphics International, Tokyo, 2003:22-27.
  • 5Dyn N, Levin D, Gregory J A. A 4-point interpolatory subdivision scheme for curve design[J]. Computer Aided Geometric Design, 1987, 4(3) : 257-268.
  • 6Hassan M F, Ivrissimitzis I P, Dodgson N A, et al. An interpolating 4-point C^2 ternary stationary subdivision scheme [J]. Computer Aided Geometric Design, 2002, 19 (1): 1-18.
  • 7Dyn N, Floater M S, Hormann K. A C^2 four-point subdivision scheme with fourth order accuracy and its extensions [M] //Mathematical Methods for Curves and Surfaees. Brentwood: Nashboro Press, 2004:145-156.
  • 8Marinov M, Dyn N, Levin D. Geometrically controlled 4- point interpolatory schemes [M]//Advances in Multiresolution for Geometric Modeling. London: Springer, 2006:303-315.
  • 9Cai Z J. Modified four-point scheme and its application [J]. Computer Aided Geometric Design, 1998, 15(2): 251-260.
  • 10Dyn N, Kuijt F, Levin D, et al. Convexity preservation of the four-point interpolatory subdivision scheme [J]. Computer Aided Geometric Design, 1999, 16(8): 789-792.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部