摘要
设S={x_1,x_2,…,x_n}是由n个不同的正整数组成的集合,并且设a为正整数.如果一个n阶矩阵的第i行j列元素定义为(-1)^(i+j)(x_i,x_j)~a,其中(x_i,x_j)_a表示S中的元素x_i与x_j的最大公因子的a次幂,则称这个矩阵((-1)^(i+j)(x_i,x_j)~a)是定义在S上的a次幂最大公因子(GCD)交错矩阵,简记为(AS^a).类似可定义a次幂最小公倍数(LCM)交错矩阵((-1)^(i+j)[x_i,x_j]~a),简记为[AS^a].在本文中,设S由三个互素的因子链构成,且1∈S.作者证明了如下结果成立:(1)若a|b,则det(AS^a)| det(AS^b),det[AS^a]| det[AS^b],det(AS^a)| det[AS^b];(2)在n阶整数矩阵环M_n(Z)中,若a|b,则(AS^a)|(AS^b),[AS^a]|[AS^b],(AS^a)|[AS^b];若ab,则(AS^a)(AS^b),[AS^a][AS^b],(AS^a)[AS^b].
Let S = {x_l ,x_2 ,… ,x_n } be a set ofn distinct positive integers anda≥1 be an integer. The matrix ( (-1 )^i=j (xi ,xj )a ) having the a th power (-1 )^i=j(xl ,:rj )a as its (i,j) entry is called a th power alternating greatest common divisor (GCD) matrix defined on S ,abbreviated by (AS^a). Similarly we can define the a th power alternating LCM matrix ((-1)^i=j[x_l ,x_j]), abbreviated by [AS^b ]. In this paper, we assume that S consists of two coprime divisor chains and 1 E S. We show the following results are true. If a [ b, then det (AS^a ) ] det (AS^b ), det [AS^a ] I det [AS^b ], det (AS^a) [ det [AS^b ] ; If a [ b, then in the ring/Vim (Z) of n )〈 n matrices over the integers, we have (AS^a) I (AS^b), [AS^a] [AS^b, (AS^a) [AS^b ]. But such results fail to be true if a b. Key words: divisibility, three coprime divisor chains, alternating power GCD matrix, alternating power LCM matrix
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第2期253-257,共5页
Journal of Sichuan University(Natural Science Edition)
基金
中央高校基本科研业务费专项资金资助(XDJK2010C058)
高等学校博士学科点专项科研基金(20100181110073)
关键词
整除
三个互素因子链
交错幂GCD矩阵
交错幂LCM矩阵
divisibility, three coprime divisor chains, alternating power GCD matrix, alternating powerLCM matrix