期刊文献+

定义在三个互素因子链上的交错幂GCD和交错幂LCM矩阵的整除性 被引量:2

Divisibility of alternating Smith matrices on three coprime divisor chains
原文传递
导出
摘要 设S={x_1,x_2,…,x_n}是由n个不同的正整数组成的集合,并且设a为正整数.如果一个n阶矩阵的第i行j列元素定义为(-1)^(i+j)(x_i,x_j)~a,其中(x_i,x_j)_a表示S中的元素x_i与x_j的最大公因子的a次幂,则称这个矩阵((-1)^(i+j)(x_i,x_j)~a)是定义在S上的a次幂最大公因子(GCD)交错矩阵,简记为(AS^a).类似可定义a次幂最小公倍数(LCM)交错矩阵((-1)^(i+j)[x_i,x_j]~a),简记为[AS^a].在本文中,设S由三个互素的因子链构成,且1∈S.作者证明了如下结果成立:(1)若a|b,则det(AS^a)| det(AS^b),det[AS^a]| det[AS^b],det(AS^a)| det[AS^b];(2)在n阶整数矩阵环M_n(Z)中,若a|b,则(AS^a)|(AS^b),[AS^a]|[AS^b],(AS^a)|[AS^b];若ab,则(AS^a)(AS^b),[AS^a][AS^b],(AS^a)[AS^b]. Let S = {x_l ,x_2 ,… ,x_n } be a set ofn distinct positive integers anda≥1 be an integer. The matrix ( (-1 )^i=j (xi ,xj )a ) having the a th power (-1 )^i=j(xl ,:rj )a as its (i,j) entry is called a th power alternating greatest common divisor (GCD) matrix defined on S ,abbreviated by (AS^a). Similarly we can define the a th power alternating LCM matrix ((-1)^i=j[x_l ,x_j]), abbreviated by [AS^b ]. In this paper, we assume that S consists of two coprime divisor chains and 1 E S. We show the following results are true. If a [ b, then det (AS^a ) ] det (AS^b ), det [AS^a ] I det [AS^b ], det (AS^a) [ det [AS^b ] ; If a [ b, then in the ring/Vim (Z) of n )〈 n matrices over the integers, we have (AS^a) I (AS^b), [AS^a] [AS^b, (AS^a) [AS^b ]. But such results fail to be true if a b. Key words: divisibility, three coprime divisor chains, alternating power GCD matrix, alternating power LCM matrix
作者 李懋 谭千蓉
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期253-257,共5页 Journal of Sichuan University(Natural Science Edition)
基金 中央高校基本科研业务费专项资金资助(XDJK2010C058) 高等学校博士学科点专项科研基金(20100181110073)
关键词 整除 三个互素因子链 交错幂GCD矩阵 交错幂LCM矩阵 divisibility, three coprime divisor chains, alternating power GCD matrix, alternating powerLCM matrix
  • 相关文献

参考文献25

  • 1Beslin S,Ligh S. Another generalisation of Smith's determinant[J].Bulletin of the Australian Mathematical Society,1989.413.doi:10.1017/S0004972700017457.
  • 2Bourque K,Ligh S. On GCD and LCM matrices[J].Linear Algebra and Its Applications,1992.65.doi:10.1016/0024-3795(92)90042-9.
  • 3Feng W,Hong S,Zhao J. Divisibility properties of power LCM matrices by power GCD matrices on gcdclosed sets[J].Discrete Mathematics,2009,(9):2627.doi:10.1016/j.disc.2008.06.014.
  • 4He C. Divisibility of determinants of power matrices on GCD-closed sets[J].Acta Math Sinica:Chinese Series,2006.647.
  • 5He C,Zhao J. More on divisibility of determinants of LCM matri-ces on GCD-closed sets[J].Southeast Asian Bulletin of Mathematics,2005.887.
  • 6Hong S. Gcd-closed sets and determinants of matrices associated with arithmetical functions[J].Acta Arithmetica,2002.321.doi:10.4064/aa101-4-2.
  • 7Hong S. On the factorization of LCM matrices on GCD-closed sets[J].Linear Algebra and Its Applications,2002,(0):225.doi:10.1016/S0024-3795(01)00499-2.
  • 8Hong S. Factorization of matrices associated with classes of arithmetical functions[J].Colloquium Mathematicum,2003.113.doi:10.4064/cm98-1-9.
  • 9Hong S. Nonsingularity of matrices associated with classes of arithmetical functions[J].Algebra,2004,(1):1.doi:10.1016/j.jalgebra.2004.07.026.
  • 10Hong S. Notes on power LCM matrices[J].Acta Arithmetica,2004.165.

二级参考文献86

  • 1谭千蓉,林宗兵,刘浏.两个互素因子链上的幂GCD矩阵的行列式与幂LCM矩阵的行列式的整除性[J].四川大学学报(自然科学版),2009,46(6):1581-1584. 被引量:6
  • 2Bourque K,Ligh S.On GCD and LCM matrices[J].Linear Algebra Appl,1992,174:65.
  • 3Bourque K,Ligh S.Matrices associated with classes of arithmetical functions[J].Number Theory,1993,45:367.
  • 4Bourque K,Ligh S.Matrices associated with arithmetical functions[J].Linear Multilinear Algebra,1993,34:261.
  • 5Cao W.On Hongs conjecture for power LCM matrices[J].Czechoslovak Math,2007,57:253.
  • 6Codeca P,Nair M.Calculating a determinant associated with multilplicative functions[J].Boll Unione Mat Ital Sez B Artic Ric Mat,2002,5(8):545.
  • 7Feng W,Hong S,Zhao J.Divisibility properties of power LCM matrices by power GCD matrices on gcd-closed sets[J].Discrete Math,2009,309:2627.
  • 8Haukkanen P,Korkee I.Notes on the divisibility of LCM and GCD matrices[J].International J Math and Math Science,2005,6:925.
  • 9He C,Zhao J.More on divisibility of determinants of LCM matrices on GCD-closed sets[J].Southeast Asian Bull Math,2005,29:887.
  • 10Hilberdink T.Determinants of multiplicative Toeplitz matrices[J].Acta Arith,2006,125:265.

共引文献10

同被引文献29

  • 1谭千蓉,林宗兵,刘浏.两个互素因子链上的幂GCD矩阵的行列式与幂LCM矩阵的行列式的整除性[J].四川大学学报(自然科学版),2009,46(6):1581-1584. 被引量:6
  • 2李懋.关于最大公因子封闭集上的幂LCM矩阵的注记[J].四川大学学报(自然科学版),2007,44(4):779-781. 被引量:2
  • 3Hong S, Loewy R. Asymptotic behavior of eigenval-ues of greatest common divisor matrices[J]. Glasgow Math J, 2004, 46: 551.
  • 4Yu Y, Gu D. A note on a lower bound for the smal- lest singular value[J]. Linear Algebra Appl, 1997, 253 : 25.
  • 5Rojo O. Further bounds of the smallest singular val- ue and the spectral condition number[J]. Computer and Mathematics with Application, 1999, 38: 215.
  • 6Smith H J S. On the value of a certain arithmetical determinant[J]. Proe London Math Soe, 1875-1876, 7 : 208.
  • 7Horn R, Johnson C R. Matrix analysis[M]. Cam- bridge: Cambridge University Press, 1985.
  • 8Hong S. On the Bourque-Ligh conjecture of least common multiple matrices[J]. Algebra, 1999, 218: 216.
  • 9Hong S, Zhou X, Zhao J. Power GCD matrices for a UFD[J]. Algebra Colloq, 1986, 16. 17.
  • 10Bourque K, Ligh S. On GCD and LCM matrices [J]. Linear Algebra Appl, 1992, 174: 65.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部