期刊文献+

奇异哈密顿系统的周期解(英文)

Periodic solutions of singular Hamiltonian systems
原文传递
导出
摘要 应用Cerami-Palais-Smale条件下的Bahri-Rabinowitz极小极大方法,作者研究了一类给定能量的二阶奇异哈密顿系统在没有对称性条件下的新周期解的存在性.该结果推广了Tanaka的相应结果. In this paper, the minimax method of Bahri Rabinowitz with Cerami Palais Smale condition is applied to study the existence of new periodic solutions with a prescribed energy for a class of singular second order Hamiltonian systems without any symmetry. The results obtained generalizes a result of Tanaka.
作者 唐姗姗
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期267-272,共6页 Journal of Sichuan University(Natural Science Edition)
关键词 奇异哈密顿系统 周期解Bahri-Rabinowitz极小极大方法 Cerami-Palais-Smale条件 singular Hamiltonian systems, periodic solutions, Bahri Rabinowitz's minimax method, Cerami Palais Smale condition
  • 相关文献

参考文献16

  • 1Gordon W B. Conservative dynamical systems involving strong forces[J].Transactions of the American Mathematical Society,1975.113.doi:10.1090/S0002-9947-1975-0377983-1.
  • 2Gordon W B. A minimizing property of Keplerian orbits[J].American Journal of Mathematics,1977.961.doi:10.2307/2373993.
  • 3Ambrosetti A,Coti Zelati V. Critical points with lack of compactness and singular dynamical system[J].Annali Di Matematica Pura Ed Applicata,1987.237.doi:10.1007/BF01773936.
  • 4Ambrosetti A,Coti Zelati V. Closed orbits of fixed energy for singular Hamiltonian systems[J].Archive For Rational Mechanics and Analysis,1990.339.doi:10.1007/BF02384078.
  • 5Ambrosetti A,Coti Zelati V. Closed orbits of fixed energy for a class of N-body problems[J].Ann Ins:H Poincare Anal Non Lineaire,1992.187.
  • 6Bahri A,Rabinowitz P H. A minimax method for s class of Hamiltonian systems with singular potentials[J].Journal of Functional Analysis,1989.412.doi:10.1016/0022-1236(89)90078-5.
  • 7Greco C. Periodic solutions of a class of singular Hamiltonian systems[J].Nonlinear Anal:T M A,1988.259.doi:10.1016/0362-546X(88)90112-5.
  • 8Benci V,Giannoni F. Periodic solutions of prescribed energy for a class of Hamiltonian systems with singular potentials[J].Journal of Differential Equations,1989.60.doi:10.1016/0022-0396(89)90167-8.
  • 9Tanaka K. A prescribed energy problem for a singular Hamiltonian system with weak force[J].Journal of Functional Analysis,1993.351.doi:10.1006/jfan.1993.1054.
  • 10Rabinowitz P H. Minimax methods in critical point theory with applications[A].New York:AMS,1986.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部