期刊文献+

李代数平凡扩张的自同构群和导子李代数 被引量:4

On groups of automorphisms and derivation Lie algebras of trivial extensions of Lie algebras
原文传递
导出
摘要 对于李代数g的通过模V的平凡扩张g∝V,作者分别构造了它的自同构群和导子李代数的由半直积给出的子群和子代数.作为应用,作者在单李代数及其有限维单模上得到了相应的自同构群和导子李代数的完整刻画. For the trivial extension 9 oc V of a Lie algebra g by a g module V, the authors construct a subgroup (resp. a subalgebra) via semidirect products of the group of automorphisms of θ∝V (resp. the derivation Lie algebra). As an application to simple Lie algebras and their finitedimensional modules, the corresponding groups of automorphisms and derivations are determined.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期285-290,共6页 Journal of Sichuan University(Natural Science Edition)
关键词 半直积 自同构群 导子李代数 semidirect products, automorphism groups, derivation Lie algebras
  • 相关文献

参考文献15

  • 1Chevalley C. On groups of automorphisms of Lie groups[J].Proc N A S Mathematics,1944.274.
  • 2Humphreys J E. Introduction to Lie algebras and Representation theory[M].GTM 9.New York:Springer-Verlag,1972.
  • 3Jacobson N. Lie algebras[M].New York:Dover Publications,Inc,1962.
  • 4Onishchik A L,Vinberg E B. Lie groups and Lie algebras Ⅲ[M].Berlin,Heidelberg:Springer-Verlag,1994.
  • 5Weibel C A. An introduction to homological algebra[M].Cambridge:Cambridge University Press,1994.
  • 6Kac V. Infinite dimensional Lie algebras[M].Cambridge:Cambridge University Press,1990.
  • 7Kumar S. A homology vanishing theorem for KacMoody algebras with coefficients in the category O[J].Algebra,1986,(02):444.
  • 8Petit T,Van Oystaeyen F. Note on the generalized derivation tower theorem for Lie algebras[A].New York:Chapman &-Hall/CRC,2006.
  • 9Su Y,Zhu L. Derivation algebras of centerless perfect Lie algebras are complete[J].Algebra,2005,(2):508.doi:10.1016/j.jalgebra.2004.09.033.
  • 10Onishchik A L,Khakimdzhanov YU B. Semidirect sums of Lie algebras[J].Translated from Mathematicheskie Zametik,1975.31.

二级参考文献12

  • 1Kac V G. Infinite dimensional Lie algebras [ M]. 3rd ed. Cambridge: Cambridge University Press, 1990.
  • 2Moody R V, Eswara Rao S, Yokonuma T. Toroidal Lie algebras and vertex representations [J ]. Geom Dedicate, 1990, 35: 283.
  • 3Eswara Rao S, Moody R V. Vertex representations for N-toroidal Lie algebras and a generalization of the Virasoro algebras [J]. Comm Math Phys, 1994, 159: 239.
  • 4Saito K, Yoshii D. Extended root systems Ⅰ[J]. Publ RIMS Kyoto Univ, 1985, 36: 385.
  • 5Garland H. The arithemetic theory of loop groups[J]. Publ Math IHES, 1980, 52: 5.
  • 6Kassel C. Kahler differentials and coverings of complex simple Lie algebras extended over a commutative algebra [J]. J pure Appl Algebra, 1984, 34: 365.
  • 7S. Berman,R. V. Moody.Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy[J].Inventiones Mathematicae.1992(1)
  • 8.
  • 9Kac VG.Infinite Dimensional Lie Algebras[]..1990
  • 10P.Slodowy.Beyond Kac-Moody algebras,and inside[].CanadMathSocConf Proc.1988

共引文献1

同被引文献45

  • 1徐芒,方颖珏.关于Benkart-Zlemanov相交矩阵李代数[J].四川大学学报(自然科学版),2009,46(6):1620-1622. 被引量:2
  • 2Kac V G. Vertex algebras for beginners [M]. 2nd ed. Providence, Rhode Island: AMS, 1998.
  • 3Beilinson A, Drinfeld V. Chiral algebras [M]. Prov- idence, Rhode Island: AMS, 2004.
  • 4Cheng S J,Kac V G. ConIormal modules[J]. Asian J Math, 1997, 1: 181.
  • 5Andrea A D', Kac V G. Structure theory o[ {inite conformal algebras [J]. Sel math New ser 1998, 4 (3) : 377.
  • 6Bakalov B, Andrea A D', Kae V G. Theory of finite pseudoalgebras [J]. Adv Math, 2001, 162: 1.
  • 7Bakalov B, Andrea A. D', Kac V G. Irreducible modules over finite simple Lie pseudoalgebras [, primitive pseudoalgebras of type W and S [J]. Adv Math, 2006, 204(1): 278.
  • 8Bakalov B, Andrea A D', Kac V G. Irreducible modules over finite simple Lie pseudoalgebras lI, primitive pseudoalgebras of type K [EB/OL]. http: //arxiv. org/abs/1003. 6055.
  • 9Bakalov B. An algebraic approach to the operator product expansion[D]. Cambridege: Department of Mathematics, MIT, 2000.
  • 10Retakh A. Unital associative pseudoalgebras and their representations [J] J Algebra, 2004, 277 :769.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部