期刊文献+

一个有理差分方程解的存在性和稳定性 被引量:2

Existence and stability of solution of a rational difference equation
原文传递
导出
摘要 作者考虑了一个分母含有二次项的有理差分方程.应用线性化方程理论,作者证明了解的存在性和稳定性,并在一定条件下,证明了该方程所有的正解都收敛到唯一的正平衡点.所得结果证明了Sedaghat提出的一个猜想是正确的. A rational difference equation with a quadratic denominator is investigated. By using the theory of linearized equation, the existence and stability of the solution is proved and all the positive solutions of the equation converge to the unique positive equilibrium under certain conditions. The obtained result proves a conjecture which is given by Sedaghat.
作者 蒋敏 周俊
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期304-308,共5页 Journal of Sichuan University(Natural Science Edition)
基金 四川省教育厅青年基金(07ZB015)
关键词 差分方程 奇点集 平衡点 稳定 difference equation, singularity set, equilibrium point, stability
  • 相关文献

参考文献11

  • 1Kulenovic M R S,Ladas G. Dynamics of second order rational difference equations with open problems and conjectures[M].Boca Raton..Chapman Hall/CRC,2002.
  • 2李先富,李洪旭.高阶有理差分方程单半环解的存在性(英文)[J].四川大学学报(自然科学版),2009,46(3):540-542. 被引量:1
  • 3Kocic V L,Ladas G. Global behavior of nonlinear difference equations of higher order with applications[M].Dordrecht:Kluwer Publishing,1993.
  • 4Elaydi S. An introduction to difference equations[M].New York:springer-verlag,2005.
  • 5唐玉萍.一个时滞差分方程的周期性[J].四川大学学报(自然科学版),2000,37(2):181-184. 被引量:1
  • 6Sedaghat H. Nonlinear difference equations:theory with applications to social science models[M].Dordrecht:Kluwer Publishing,2003.
  • 7Sedaghat H. Open problems and conjectures:on thirdorder rational difference equations with quadratic terms[J].Journal of Difference Equations and Applications,2008.889.doi:10.1080/10236190802054118.
  • 8Sedaghat H. Global behaviours of rational difference equations of orders two and three with quadratic terms[J].Journal of Difference Equations and Applications,2009.215.
  • 9Dehghan M,Kent C M,Mazrooei-Sebdani R. Monotone and oscillatory solutions of a rational difference equation containing quadratic terms[J].Journal of Difference Equations and Applications,2008,(10/11):1045.doi:10.1080/10236190802332266.
  • 10Dehghan M,Kent C M,Mzarooei-Sebdani R. Dynamics of rational difference equations containing quadratic terms[J].Journal of Difference Equations and Applications,2008,(2):191.doi:10.1080/10236190701565636.

二级参考文献13

  • 1Amleh A M, Georgia D A, Grove E A, etal. On the recursive sequence xn+1 =a+xn/xn-1 [J]. J Math Anal Appl,1999, 233: 790.
  • 2Kulenovic M R S, Ladas G. Dynamics of second-order rational equations, with open problems and conjectures[M]. Cleveland: CRC Press, 2002.
  • 3Li X Y. Existence of solutions with a single semicyele for a general second-order rational difference equation [J]. J Math Anal Appl, 2007, 334:528.
  • 4Xi H J, Sun T X. Global behavior of a higher-order rational difference equation[J]. Adv Diff Eq, 2006, Article ID 27637.
  • 5Berg L Inclusion theorems for non-linear difference equations with applieations[J]. J Diff Eq Appl, 2004, 10: 399.
  • 6Agarwal R P,O'Regan D. Boundary value problems for discrete equations[J]. Applied Mathematics Letters, 1997, 10(4) : 83.
  • 7Henderson J, Thompson H B. Existence of multiple solutions for second-order discrete boundary value problem [J]. Computers and Mathematics with Applications, 2002, 43(10-11) : 1239.
  • 8Agarwal R P, Thompson H B, Tisdell C C. Difference equation in banach spaces[J]. Computers and Mathematics with Applications, 2003, 45(6-9) : 1437.
  • 9Sun J P, Li W T. Existence of positive solutions of boundary value problem for a discrete difference system [J ]. Applied Mathematics and Computation, 2004, 156(3) : 857.
  • 10Ma R Y, Raffoul Y N. Positive solutions of three-point nonlinear discrete second order boundary value problem [J]. Journal of Difference Equations and Applications, 2004,10(2) : 129.

共引文献4

同被引文献4

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部