期刊文献+

改进的基于数据重构的KPCA故障识别方法 被引量:4

Improved KPCA Fault Identification Method Based on Data Reconstruction
下载PDF
导出
摘要 核主元分析(KPCA)方法相对于主元分析(PCA)方法在非线性过程监测方面具有一定的优势,但是KPCA很难找到由特征空间到原始空间的逆映射函数,这给基于KPCA的故障诊断带来了很大的障碍.为此,在KPCA故障数据重构方法的基础上,对故障识别指标进行改进.改进后的方法既能够识别单变量引起的故障,又能识别多变量引起的故障,而且减少了指标计算过程中的运算量,避免了传统故障识别方法只能实现单变量故障追溯的缺陷.将提出的故障识别方法在田纳西过程中进行了仿真研究,结果表明所提方法的有效性. Compared with the principal component analysis(PCA) method,kernel principal component analysis(KPCA) method has more advantages in the monitoring of nonlinear processes.However,it is difficult to find an inverse mapping function from the feature space to the original space for KPCA,resulting in great difficulties for the KPCA-based fault diagnosis.To solve this problem,the fault identification index was improved on the basis of KPCA fault data reconstruction method.The improved method could identify both univariate faults and multivariate faults.In addition,the proposed method could also reduce calculation and avoid the defect that the traditional fault detection methods could only identify univariate faults.The simulation results indicated the feasibility and effectiveness of the proposed method by testing it in the Tennessee-Eastman process.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期500-503,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61074074 61174130) 国家重点基础研究发展计划子项目(2009CB320601) 中央高校基本科研业务费专项资金资助项目(N100404022 N110304010)
关键词 数据重构 KPCA 故障识别 非线性 田纳西过程 data reconstruction KPCA(kernel principal component analysis) fault identification nonlinear Tennessee-Eastman process
  • 相关文献

参考文献9

  • 1Zhao C H,Yao Y,Gao F R,et al.Statistical analysis andonline monitoring for multimode processes with between-modetransitions[J].Chemical Engineering Science,2010,65(22):5961-5975.
  • 2Carlos F A,Qin S J.Reconstruction-based contribution forprocess monitoring[J].Automatica,2009,45(7):1593-1600.
  • 3Nizai A,Yazdanipour A.Spectrophotometric simultaneousdetermination of nitrophenol isomers by orthogonal signalcorrection and partial least squares[J].Journal of HazardousMaterials,2007,146(1/2):421-427.
  • 4Scholkopf B,Smola A,Muller K.Nonlinear componentanalysis as a kernel eigenvalue problem[J].NeuralComputation,1998,10(5):1299-1327.
  • 5Zhao C H,Wang F L,Zhang Y W.Nonlinear processmonitoring based on kernel dissimilarity analysis[J].ControlEngineering Practice,2009,17(1):221-230.
  • 6Cho J H,Lee J M,Choi S W,et al.Fault identification forprocess monitoring using kernel principal component analysis[J].Chemical Engineering Science,2005,60(1):279-288.
  • 7Lee J M,Yoo C K,Choi S W,et al.Nonlinear processmonitoring using kernel principal component analysis[J].Chemical Engineering Science,2004,59(1):223-234.
  • 8Choi S W,Lee C,Lee J M,et al.Fault detection andidentification of nonlinear processes based on kernel PCA[J].Chemometrics and Intelligent Laboratory Systems,2005,75(1):55-67.
  • 9McAvoy T J,Ye N.Base control for the Tennessee Eastmanproblem[J].Computers&Chemical Engineering,1994,18(5):383-413.

同被引文献36

  • 1仇韬,张清峰,丁艳军,吴占松,张毅,孔亮.PCA在非线性系统传感器故障检测和重构中的应用[J].清华大学学报(自然科学版),2006,46(5):708-711. 被引量:14
  • 2毕小龙,王洪跃,司风琪,徐治皋.基于核主元分析的传感器故障检测[J].动力工程,2007,27(4):555-559. 被引量:15
  • 3Yang J, Gao X, Zhang D, et al. Kernel ICA: An al- ternative formulation and its application to face tee ognition[J]. Pattern Recognition, 2005, 38 (10) : 1784-1787.
  • 4Hyvttrinen A, Karhunen J, Oja E. Independent component analysis[M]. New York, USA: John Wiley : Sons,Inc, 2001.
  • 5Cardoso J F, Soulomica A. Blind beamforming for non-Gaussian signals[J]. IEEE Proc F, 1993, 140 (6) :362-370.
  • 6Lee J M, Yoo C, Lee I B. Statistical proeess monito- ring with independent component analysis[J]. Jour- nal of Process Control, 2004,14(5):467 485.
  • 7Simoglou A, Martin E B, Morris A J. Statistical performance monitoring of dynamic multivariate processes using state space modeling[J]. Computers and Chemical Engineering, 2002, 26(6):909-920.
  • 8Chen Q, Wynne R J, Goulding P, et al. The applica- tion of principal component analysis and kernel densi- ty estimation to enhance process monitoring [J]. Control Engineering Practice, 2000,8 ..531-543.
  • 9Chiang L H, Russell E L, Braatz R D. Fault detec- tion and diagnosis in industrial systems [M]. Lon- don= Spring-Verlag London Limited, 200i.
  • 10Chen J H, Liao C M. Dynamic process fault monito- ring based on neural network and PCA[J]. Journal of Process Control, 2002,12(2) =277-289.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部