期刊文献+

基于扩展H_∞滤波的光电跟踪目标预测方法研究 被引量:1

Target Estimation in Opto-electronic Tracking System Based on Extend H_∞ Filter
原文传递
导出
摘要 在光电跟踪系统目标状态预测过程中,噪声统计特性不确定是导致滤波精度下降的主要原因之一。针对该问题,提出了一种基于"当前"统计模型的扩展H∞滤波(EHF)方法,并与扩展卡尔曼(EKF)滤波方法做了仿真比较。仿真结果证明,在白噪声条件下,EKF滤波方法虽然精度略高,但收敛速度要差于EHF方法;在有色噪声条件下,EKF滤波方法几乎不能完成滤波,而EHF滤波器可以保持和白噪声假设条件相当的滤波精度,并且在目标发生机动的情况下该方法仍具有较强的鲁棒性。 Variation of noises statistical character is one of the main reasons which deteriorate the filter's precision in the opto-electronic tracking system.To solve this problem,extend H∞ filter(EHF) based on the acceleration non-zero mean value time-correlation model was introduced.Result of the simulation shows that,with the white noise,the precision of extend kalman filter(EKF) is better than EHF,but the convergence velocity of EHF is quicker.When the noise is non-white,EKF filter can't finish the job,but EHF filter has the comparative precision with former result,and at the same time,it has good robustness when target maneuvering occurs.
出处 《战术导弹技术》 2012年第2期90-94,共5页 Tactical Missile Technology
关键词 光电跟踪 状态估计 H∞滤波 扩展Kalman滤波 opto-electronic tracking state estimation extend H∞ filter extend Kalman filter
  • 相关文献

参考文献2

二级参考文献8

  • 1王华朋,裴承鸣,钟雄虎,李少伟.基于模糊卡尔曼滤波的信息融合算法[J].计算机测量与控制,2006,14(9):1230-1232. 被引量:10
  • 2[1]Seong-Taek Park, Jang Gyu Lee. Improved kalman filter design for three-dimensional radar measurements [J]. IEEE Transactions on Aerospace and Electronic Systems, 2001,37(2) : 727~739.
  • 3[2]Lerro D. , Bar-Shalom Y.. Tracking with debiased consistent converted measurement verus EKF [J]. IEEE Transactions on Aerospace and Electronic Systems,1993,9(3):1015~1022.
  • 4[3]Seong-Taek Park, Jang Gyu Lee. Design of a practical tracking algorithm with radar measurements[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34 (4): 1337~ 1343.
  • 5Kalman R E.A new approach to linear filtering and prediction problems[J].Trans ASME on Journal of Basic Eng,1960,82:35-46.
  • 6Sasiadek J Z,Khe J.Sensor fusion based on fuzzy Kalman filter[C]//2001 Proceedings of the Second International Workshop on Robot Motion and Control,2001,10(18-20):275-283.
  • 7Thierry M G,Laurent V.Control laws for Takagi-Sugeno fuzzy models[J].Fuzzy Sets and Systems on,1998,12:95-108.
  • 8Escamilla A P J,Mort N.Multi-sensor data fusion architecture based on adaptive Kalman filters and fuzzy logic performance assessment[C]//2002 Proceedings of the Fifth International Conference on Information Fusion,2002,2:1542-1549.

共引文献23

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部