期刊文献+

A_1 Weights and d-Homogeneous Measures on Ahlfors d-Regular Space

A_1 Weights and d-Homogeneous Measures on Ahlfors d-Regular Space
原文传递
导出
摘要 Let X be an Ahlfors d-regular space and rn a d-regular measure on X. We prove that a measure μ on X is d-homogeneous if and only if μ is mutually absolutely continuous with respect to m and the derivative Dmμ(x) is an A1 weight. Also, we show by an example that every Ahlfors d-regular space carries a measure which is d-homogeneous but not d-regular. Let X be an Ahlfors d-regular space and rn a d-regular measure on X. We prove that a measure μ on X is d-homogeneous if and only if μ is mutually absolutely continuous with respect to m and the derivative Dmμ(x) is an A1 weight. Also, we show by an example that every Ahlfors d-regular space carries a measure which is d-homogeneous but not d-regular.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第5期901-908,共8页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant Nos. 10971056 and 10771164)
关键词 Ahlfors regular space homogeneous measure Ahlfors regular measure WEIGHT Ahlfors regular space, homogeneous measure, Ahlfors regular measure, weight
  • 相关文献

参考文献2

二级参考文献37

  • 1Chanillo, S.: A note on commutators. Indiana Univ. Math. J., 31, 7-16 (1982).
  • 2Segovia, C., Torrea, J. L.: Weighted inequalities for commutators of fractional and singular integrals. Publ. Matematiques, 35, 209--235 (1991).
  • 3Bramanti, M., Cerutti, M.C.: Commutators of singular integrals and fractional integrals on homogeneous spaces, Harmonic Analysis and Operator Theory, (Caracas 1994), (Providence, RI). Conterap. Math., A.M.S., 189, 81-94 (1995).
  • 4Betancor, J.: A commutator theorem for fractional integrals in spaces of homogeneous type. Inter'nat. J. Math. & Math. Sci., 24(6), 403-418 (2000).
  • 5Harboure, E., Segovia, C., Torrea, J. L.: Boundedness of commutators of fractional and singular integrals for the extreme values of p. Illinois J. of Math., 41(4), 676-700 (1997).
  • 6Perez, C., Trujillo-Conzalez, R.: Sharp weighted estimates for multilinear commutators. J. London Math. Soc., 65(2), 672-692 (2002).
  • 7Maocias, R., Segovia, C.: Lipschitz functions on spaces of homogeneous type. Adv. Math., 33, 257-270 (1979).
  • 8Bernardis, A., Salinas, O.: Two-weighted inequalities for certain maximal fractional operators on spaces of homogeneous type. Revista de la Union Matemdtica Argentina, 41(3), 61-75 (1999).
  • 9Cruz Uribe, D., Fiorenza, A.: Endpoint estimates and weighted norm inequalities for commutators of fractional integrals. Publ. Mat., 47, 103-131 (2003).
  • 10Ding, Y., Lu, S. Z, Zhang, P.: Weak estimates for commutators of fractional integral operators. Science in China (Series A), 44(7), 877-888 (2001).

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部