期刊文献+

遗传支持向量机在城市节假日电力负荷预测中的应用 被引量:1

下载PDF
导出
摘要 支持向量机(support vector machines,SVM)根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折衷,具有良好的预测效果?但是在基于支持向量机的负荷预测方法中,参数的选择对预测结果具有较大影响,可能导致结果误差较大。本文利用遗传算法对SVM的参数最优值进行自动搜索,改善其预测性能。然后将遗传支持向量机(GA-SVM)应用于广东省某城市的节假日电力负荷预测。结果表明,基于遗传支持向量机的预测效果比相似日法更好。
作者 唐山 张现刚
出处 《产业与科技论坛》 2012年第1期91-92,114,共3页 Industrial & Science Tribune
  • 相关文献

参考文献4

二级参考文献23

  • 1Liu K. Comparison of very short-term load forecasting technique[J]. IEEE Trans. Power Systems, 1996,11(2): 877-882.
  • 2Hippert H S, Pefreira C E, Souza R C. Neural network for short-term load forecasting: A review and evaluation[J].IEEE Trans. Power System. 2001,16(2): 44-54.
  • 3Muller K R, Smola A J, Ratsch G, et al.Prediction time series with support vector machines[C].In Proc of ICANN'97., Springer LNCS 1327, Bedin,1997, 999-1004.
  • 4Papadakis S E, Theocharis J B, Kiartzis S J, et al. A novel approach to short-term load forecasting using fuzzy neural net-works[J].IEEE Trans. Power Systems, 1998,13(2):480-492.
  • 5Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing[M].Cambridge, MA, MIT Press, 1997, 281-287.
  • 6Smola A J. Regression estimation with support vector learning machines[D]. Technische Universit"at M" unchen.1996.
  • 7Vapnik V N. The nature of statistical learning theory[M]. New York:Springer, 1995.
  • 8Mukherjee S, Osuna E, Girosi F. Nonlinear prediction of chaotic time series using support vector machines[C]. Proceedings of NNSP '97,Amelia Island,FL,1997.
  • 9Smola A J, Scholkopf B. A tutorial on support vector regression[R].NeuroCOLT Tech. Rep.TR 1998-030,Royal Holloway College,London, U.K,1998.
  • 10Shevade S K, Keerthi S S, Bhattcharyy C, et al. Improvements to SMO algorithm for SVM regression[J]. IEEE Trans. on Neural Network, 2000,11(5): 1188-1193.

共引文献298

同被引文献6

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部