期刊文献+

一种免疫算法与SVR的Hilbert-Huang边界优化 被引量:1

Hilbert-Huang Boundary Optimization of Immune Algorithm and SVR
下载PDF
导出
摘要 Hilbert-Huang变换(Hilbert-Huang transform,HHT)在对信号进行经验模态分解(Empirical modedecomposition,EMD)和对各内禀模态函数(Intrinsic mode function,IMF)进行Hilbert变换时都会出现边界问题。为了克服该问题,本文提出了基于离散均匀免疫算法(Discrete uniform immune algorithm,DUIA)和支持向量回归(Support vector regression,SVR)的HHT边界优化方法。该方法采用DUIA优化SVR的参数,并利用SVR对数据延拓,以有效分析HHT边界问题。通过对正弦叠加信号和实际信号的仿真分析表明:所提出的算法可有效解决HHT中存在的边界问题,且其效果优于SVR的数据延拓方法。 The Hilbert-Huang transform (HHT) boundary problem appears when the signal is decomposed by the empirical mode decomposition (EMD) method as well as the intrinsic mode function (IMF) in Hilbert transform. Therefore, the HHT boundary optimization method based on discrete uniform immune algorithm (DUIA) and support vector regression (SVR) is proposed to overcome the problem. To effectively analyze the boundary problem of HHT, the scheme can use DUIA to optimize parameters of SVR, and then predict the signal by the trained optimal SVR model. For the sine superposition and practical signals, the corresponding simulation results demonstrate that the proposed algorithm can effectively solve the boundary problem of HHT, and its performance is better than the prediction method by SVR.
出处 《数据采集与处理》 CSCD 北大核心 2012年第2期196-201,共6页 Journal of Data Acquisition and Processing
基金 四川省科技厅基金(2010jz0020)资助项目 国防基础研究(B3120110005)资助项目
关键词 希尔伯特-黄变换 遗传算法 支持向量回归机 Hilbert-Huang transform (HHT) genetic algorithm support vector machine (SVM)
  • 相关文献

参考文献9

二级参考文献47

共引文献604

同被引文献77

  • 1刘少颖,卢继来,郝丽,胡广书.基于数学形态学和小波分解的QRS波群检测算法[J].清华大学学报(自然科学版),2004,44(6):852-855. 被引量:19
  • 2崔光照,曹祥红,王延峰,张勋才.生物信息学中的数字信号处理方法研究[J].科学技术与工程,2005,5(20):1494-1497. 被引量:5
  • 3彭静,彭承琳.混沌理论和方法在医学信号处理中的应用[J].国际生物医学工程杂志,2006,29(2):124-127. 被引量:14
  • 4廖旺才,胡广书,杨福生.心率变异性的非线性动力学分析及其应用[J].中国生物医学工程学报,1996,15(3):193-201. 被引量:18
  • 5Sardouie S H, Shamsollahi M B, Albera L, et al. Denoising of ictal EEG data using semi-blind source separation methods based on time-frequency priors[J]. IEEE Journal of Biomedieal and Health Informatics, 2015,19 (3) : 839-847.
  • 6Li C, Zheng C, Tai C. Detection of ECG characteristic points using wavelet transforms[J].Biomedical Engineering, IEEE Transactions on, 1995, 42(1) : 21-28.
  • 7Deepu C J. A joint QRS detection and data compression scheme for wearable sensors[J]. Biomedical Engineering, IEEE Transactions on, 20t5, 62(1): 165-175.
  • 8Huang Huifang, Hu Guangshu, Zhu Li. Sparse representation-based heartbeat classification using independent component a- nalysis[J]. Journal of Medical Systems, 2012,36(3) : 1235-1247.
  • 9Miguel A E. Electrocardiogram classification using reservoir computing with logistic regression[J]. IEEE Journal of Biomed- ical and Health Informatics, 2015, 19(3):892-898.
  • 10Oster J. Semisupervised ECG ventricular beat classification with novelty detection based on switching Kalman filters[J]. Bio- medical Engineering, IEEE Transactions on, 2015, 62(9): 2125-2134.

引证文献1

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部