期刊文献+

基于语音信号稀疏性的FDICA初始化和后处理方法 被引量:3

FDICA Initialization and Post-Processing Method Based on Sparseness of Speech
下载PDF
导出
摘要 目前解决语音信号盲源分离(Blind source separation,BSS)的两大类方法分别为频域独立成分分析(Frequency domain independent component analysis,FDICA)和基于稀疏性的时频掩蔽(Time frequency masking,TFmasking)。为此将两类方法优点相结合,利用TFmasking方法的结果,对FDICA做初始化,在加快FDICA收敛速度的同时也避免了次序不确定性问题。此外还提出了一种新的基于语音稀疏性FDICA的BSS后处理方法;基于局部最小比例控制(Local minimum ratio contr01led,LMRC)谱减法,比常规的TF masking、雏纳滤波等后处理方法,能够更有效地控制音乐噪声,提高分离性能。合成数据和实际采集数据的实验结果验证了所提方法的有效性。 There are two approaches being widely studied and employed to solve the blind source separation (BSS) problem. One is based on independent component analysis (ICA) and the other relies on the sparseness of source signals time frequency masking (TF-masking). To speed up the convergence rate and to avoid permutation problems, a method combining the advantages of both methods is presented by using the results of TF masking to initialize the fre- quency domain ICA (FDICA). Moreover, a new post-processing method for FDICA is pro- posed, i.e. local minimum ratio control (LMRC) spectral subtraction. It is based on the sparse characteristics of speech. Compared with the conventional TF masking and Wiener filter post processing methods, the proposed method can control musical noise more effectively, and improve the separation performance. Experimental results with synthetic data and real data demonstrate the effectiveness of the proposed method.
出处 《数据采集与处理》 CSCD 北大核心 2012年第2期210-217,共8页 Journal of Data Acquisition and Processing
关键词 盲源分离 独立成分分析 时频掩蔽 局部最小比例控制谱减法 blind source separation (BSS) independent component analysis (ICA) TF masking LMRC spectral subtraction
  • 相关文献

参考文献16

  • 1Jutten C,Herault J. Blind separation of sources,part Ⅰ:an adaptive algorithm based on neuron mimetic architecture[J].Signal Processing,1991,(01):1-10.
  • 2Cardoso J F,Comon P. Independent component analysis,a survey of some algebraic methods[A].Atlana:IEEE,1996.93-96.
  • 3Amari S,Cichoki A,Yang H H. A new learning algorithm for blind source separation[J].Advances in Neural Information Processing Systems,1996.757-763.
  • 4Yilmaz O,Rickard S. Blind separation of speech mixtures via time-frequency masking[J].IEEE Transactions on Signal Processing,2004,(07):1830-1847.doi:10.1109/TSP.2004.828896.
  • 5Araki S,Sawada H,Mukai R. A novel blind source separation method with observation vector clustering[A].2005.117-120.
  • 6Araki S,Sawada H,Mukai R. Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors[J].Signal Processing,2007,(08):1833-1847.
  • 7Duong N Q K,Vincent E,Gribonval R. Under-determined reverberant audio source separation using a full-rank spatial covariance model[J].IEEE Trans on Audio Speech and Language Processing,2010,(07):1830-1840.
  • 8Sawada H,Araki S,Mukai R. Blind extraction of dominant target sources using ICA and timefrequency masking[J].IEEE Transactions on Audio Speech and Language Processing,2006,(06):2165-2173.
  • 9吴奇昌.基于频域的卷积语音信号盲分离研究[D]合肥:中国科学技术大学电子工程与信息科学系,2011.
  • 10Sawada H,Araki S,Makino S. A two-stage frequency-domain blind source separation method for underdetermined convolutive mixture[A].IEEE,2007.139-142.

同被引文献37

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2李杰,刘章军.基于标准正交基的随机过程展开法[J].同济大学学报(自然科学版),2006,34(10):1279-1283. 被引量:35
  • 3Donoho D. Compressed sensing[J]. IEEE Trans Inf Theory, 2006, 52(4): 1289-1306.
  • 4Candes E, Romberg J, Tao T. Robust uncertainty principles, exact signal reconstruction from highly in- complete frequency information[J]. IEEE Trans Inf Theory, 2006, 52(2): 489-509.
  • 5Mallat S, Zhang Z. Matching pursuits with time-fre- quency dictionaries[J]. IEEE Trans Signal Process,1993, 41: 3397-3415.
  • 6Davis G, Mallat S, Avellaneda M. Adaptive greedy approximation[J]. Constr Approx, 1997, 13 (1) .. 57- 98.
  • 7Donoho D, Huo X. Uncertainty principles and ideal atomic decompositions [J]. IEEE Trans Inf Theory, 2001, 47.. 2845-2862.
  • 8Elad M, Bruckstein A M. A generalized uncertainty principle and sparse representation in pairs of bases [J]. IEEE Trans Inf Theory, 2003, 49:1579-1581.
  • 9Peyre G C. Best basis compressed sensing[J ]. IEEE Trans Signal Process, 2010, 58(5).. 2613-2622.
  • 10Griffin A, Tsakalides P. Compressed sensing of au- dio signal using multiple sensors[C]//16 th European Signal Processing Conference. Lausanne, Switzer- land:[s, n. ], 2008.. 16:1-4.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部