期刊文献+

核空间的LMS自适应多用户检测算法 被引量:1

Kernel Space-Based LMS Multi-user Detection Algorithm
下载PDF
导出
摘要 提出一种核空间的LMS(KLMS)多用户检测算法,将直接序列扩频码分多址(Direct-sequence codedivision multiple access,DS-CDMA)接收机收到的信号通过高斯核函数映射到高维特征空间(核空间),再进行线性检测。由于采用了核技巧,所有的计算都在原空间进行,避免了特征空间的复杂运算。KLMS本质是对原空间的信号进行非线性检测,性能更接近最优检测算法。在高斯信道下,仿真结果表明,通过选择合适的核参数,在获得较好稳态误差的同时,KLMS算法具有比其他变步长LMS算法更快的收敛速度。 A kernel-based LMS (KLMS) multi-user detection method is presented. The KLMS detection projects the received signal of direct-sequence code division multiple access (DS-CD- MA) system to high-dimensional character space by a Gaussian kernel function, and then uses linear detection. By using the kernel technique, all calculation is in the low-dimensional space, thus avoiding complex calculation in high-dimensional space. It is a nonlinear multi-user detec- tor for original space data. And the performance is closer to that of the optimum detector. Simulation results show that by choosing a suitable kernel parameter, KLMS can provide faster convergency with the same stable error, compared with other LMS of variable step sizes.
出处 《数据采集与处理》 CSCD 北大核心 2012年第2期225-229,共5页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(50323005)资助项目
关键词 多用户检测 核空间 LMS multi-user detection kernel space LMS
  • 相关文献

参考文献9

二级参考文献29

共引文献301

同被引文献11

  • 1Youssef M, Mah M, Agrawala Pu Challenges: Device-free passive localization for wireless environments[C]//Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking. Montreal, Canada:[s. n. ], 2007:222-229.
  • 2Seifeldin M, Saeed A, Kosba A E, et al. Nuzzer: A large-scale device-free passive localization system for wireless environ- ments[J]. IEEE Transactions on Mobile Computing, 2013, 12(7) : 1321-1334.
  • 3Zhang D, Liu Y, Guo X, et al. RASS: A real-time accurate and scalable system for tracking transceiver-free objects[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(5) : 996-1008.
  • 4Wilson J, Patwari N. Radio tomographic imaging with wireless networks[J]. IEEE Transactions on Mobile Computing, 2010, 9(5): 621-632.
  • 5Wilson J, Patwari N. See through walls: Motion tracking using variance-based radio tomography networksr[J]. IEEE Trans- actions on Mobile Computing, 2011, 10(5): 612-621.
  • 6Zhao Y, Patwari N, Phillips J M, et al. Radio tomographic imaging and tracking of stationary and moving people via kernel distance[C]// Proceedings of the 12th International Conference on Information Processing in Sensor Networks. [S. 1. ]: ACM, 2013: 229-240.
  • 7Wang J, Zhang X, Gao Q, et al. Device free localization with wireless networks based on compressive sensing[J]. Communi- cations, IET, 2012, 6(15): 2395-2403.
  • 8Zhao Y, Patwari N. Noise reduction for variance-based device-free localization and tracking[C]//Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2011 8th Annual IEEE Communications Society Conference on. [S. 1. ].. IEEE, 2011: 179-187.
  • 9Mahfouz S, Mourad-Chehade F, Honeine P, et al. Kernel-based localization using fingerprinting in wireless sensor networks [C]//Signal Processing Advances in Wireless Communications (SPAWC), 2013 IEEE 14th Workshop on. [S. 1. ].. IEEE, 2013 : 744-748.
  • 10Kushki A, Plataniotis K N, Venetsanopoulos A N. Kernel-based positioning in wireless local area networks [J]. IEEE Transactions on Mobile Computing, 2007, 6(6): 689-705.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部