期刊文献+

不同导叶预旋角下离心压缩机径向间隙区雷诺应力的测量 被引量:3

Measurements for Reynolds Stresses under Different Inlet Prewhirl in Centrifugal Compressor
下载PDF
导出
摘要 使用X热膜技术,研究了离心压缩机设计流量下3个不同进口导叶预旋角对径向间隙区雷诺应力的影响.结果表明:进口导叶为-20°时,径向间隙区的湍流强度和雷诺应力最大,0°预旋角其次,20°预旋角最小;湍动能大的区域,相应的雷诺剪应力也较大.在3个预旋角下,10%和50%叶高处的时间平均径向雷诺应力均明显大于切向雷诺应力,显示出明显的流动各向异性,叶轮出口处的时间平均径向雷诺应力为切向雷诺应力的1.5倍以上,但在扩压器进口处减少到1.25倍左右;90%叶高处的时间平均径向雷诺应力和切向雷诺应力值相差不到10%,流动更接近各向同性.0°预旋角下流动的各向异性最强.研究显示,需要更好的湍流模型来预测流动中复杂的混合过程. The effects of inlet guide vanes (IGV) prewhirl angles on Reynolds stresses in radial gap between impeller and vane diffuser in a centrifugal compressor are experimentally investigated under design condition by X-type hot-film anemometry. The results show that the levels of the turbulence intensity and the Reynolds stresses in the radial gap get the highest under -20°of prewhirl angle, while they are moderate at 0°and the lowest at 20°of prewhirl angles. High levels of Reynolds shear stresses look to be related with high levels of turbulence kinetic energy, or vice versa. In the lengths of 10% and 50% spanwise, at three prewhirl angles, the time-average Reynolds stresses in the radial direction are obviously larger than that in the tangential direction to indicate the significant anisotropy of turbulence. At the impeller outlet the time-average Reynolds stresses in the radial direction are above 1.5 times larger than those in the tangential direction, and this ratio decreases to 1.25 at the diffuser inlet. However, in the length of 90% spanwise, the turbulence is close to isotropy since the difference of the Reynolds stresses in two directions is less than 10%. The degree of turbulence anisotropy at 0°of prewhirl angle is higher than those under other two prewhirl angles.
作者 姜华 席光
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第4期125-131,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50725621) 西安科技大学培育基金资助项目(2010048)
关键词 离心压缩机 X热膜 雷诺应力 湍流强度 centrifugal compressor X hot-film Reynolds stresses turbulence intensity
  • 相关文献

参考文献2

二级参考文献11

  • 1Filipenco V G,Deniz S,Johnston J M.et al.Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers:discrete passage diffuser[J].ASME Journal of Turbomachinery,2000,122(1):1-10.
  • 2Deniz S,Greitzer E M,Cumpsty N A.Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers:straight channel diffuser[J].ASME Journal of Turbomachinery,2000,122(1):11-21.
  • 3席光,周莉,丁海萍,等.叶片扩压器进口安装角对离心压缩机性能影响的数值与实验研究[C]∥中国工程热物理年会论文集.西安:中国工程热物理学会,2004:267-272.
  • 4Simon H,Wallmann T,Monk T.Improvements in performance characteristics of single-stage and multistage centrifugal compressor by simultaneous adjustments of inlet guide vanes and diffuser vanes[J].ASME Journal of Turbomachinery,1987,109(1):41-47.
  • 5ARIGA I, KASAI N, MASUDA S. The effect of inlet distortion on the performance characteristics of a centrifugal compressor [R]. ASME paper 82-GT-92, 1982.
  • 6ROBERGE J A, MATHISEN P P. Sensitivity analyses to assess the use of CFD to predict the occurrence of vortices near pump intakes [ R]. ASME paper 99-FE-7224, 1999.
  • 7CAIN S A, PADMANABHAN M. Numerical simulation of flow distribution and swirl due to a combined pipe bend [ R]. ASME paper 99-FE-7217, 1999.
  • 8KASSENS I, RAUTENBERG M. Flow measurements behind the inlet guide vane of a centrifugal compressor [ R]. ASME paper 98-GT-86, 1998.
  • 9CHEN Y N, HAGELSTEIN D, KASSENS I. Overshoot of the rankine vortex formed in the flow field behind the inlet guide vane of centrifugal compressors [ R]. ASME paper 99-GT- 182, 1999.
  • 10CHEN Y N, HAGELSTEIN D, KASSENS I. Effect of decaying overshoot of the rankine vortex on the axial flow field behind the inlet guide vane of centrifugal compressors [ R ]. ASME paper 2000-GT-427, 2000.

共引文献16

同被引文献43

  • 1李万平,王小庆,谢华.湍流边界层雷诺应力和壁脉动压强相位滞后分析[J].华中科技大学学报(自然科学版),2007,35(4):122-125. 被引量:4
  • 2周莉,席光,蔡元虎.离心压缩机进口导叶/叶轮动静相干的数值研究[J].航空动力学报,2007,22(10):1715-1721. 被引量:11
  • 3周莉,席光,蔡元虎.进口导叶/叶轮/扩压器非定常相干的数值研究[J].西北工业大学学报,2007,25(5):625-629. 被引量:9
  • 4Roos F W, Kegelman J. Control of coherent structures in reattaching laminar and turbulent shear layers[J]. AIAA Journal, 1986, 24(12): 1956 -1963.
  • 5Zhang Z H, Li D. Active control of flow over backward facing step by synthetic jets, AIAA-2014-2979[R]. Re- ston: AIAA, 2014.
  • 6Wang W, Siouris S, Qin N. Hybrid RANS/LES for active flow control E J 1. Aircraft Engineering and Aerospace Technology: An International Journal, 2014, 86 ( 3 ): 179-187.
  • 7Choi It, Moin P, Kin, J. Active turbulence control for drag reduction in wall-bounded flows[J]. Journal of Fluid Mechanics,1994, 262: 75-93.
  • 8Crawford C H, Karniadakis G E. Reynolds stress analysis of controlled wall bounded turbulence, AIAA-1996-2008 [R]. Reston: AIAA, 1996.
  • 9Toutiaei S, Semaan R C, Naughton J W. Reynolds stress and turbulence kinetic energy balances in incompressible swirling jets, AIAA-2010-0105 [R]. Reston: AIAA, 2010.
  • 10Pathikonda G, Christensen K T. Structure of turbulent channel flow perturbed by a wall-mounted cylindrical ele- ment[J]. AIAAJournal, 2015, 53(5): 1277- 1286.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部