期刊文献+

基于改进无迹Kalman滤波的小波网络算法及其应用 被引量:2

WNN Algorithm Based on Improved Unscented Kalman Filter and Its Applications
下载PDF
导出
摘要 无迹Kalman滤波(UKF)是无迹变换(UT)和标准Kalman滤波的结合,对非线性系统具有出色的估计性能,使用UKF估计小波网络参数,速度快,精度高,无需求导计算Jacobian矩阵,但其计算量偏大.基于此,本文考虑引入一种改进的UKF来估计小波网络的参数,以提高训练效率.该改进UKF在Kalman滤波体系内应用了一种基于最小偏度单形Sigma点采样策略的UT,它继承了UKF的优点,并显著提升了计算效率.仿真结果表明,相对于EKF,采用改进UKF算法训练小波网络,速度更快,精度更高;计算精度与UKF相当,但计算效率较之更高. Unscented Kalman Filter(UKF),which is a combination of Unscented Transform(UT) and standard Kalman filter,has a good estimation performance to the nonlinear system.The parameters of Wavelet Neural Network(WNN) by UKF do not need to calculate the derivative of Jacobian matrix with fast speed and high accuracy.But UKF is computationally expensive.Based on this,an improved UKF is introduced into the parameters estimation of WNN to raise the training efficiency.The improved UKF adopts an UT based on minimal skew simplex Sigma point sampling strategy in the system of Kalman filter which has the merits of UKF,and improves the computational efficiency greatly.Simulation results show that WNN based on the improved UKF has faster training speed and higher accuracy than that of EKF,and has an approximately close accuracy to that of UKF but with high computation efficiency.
出处 《昆明理工大学学报(自然科学版)》 CAS 北大核心 2012年第1期30-35,共6页 Journal of Kunming University of Science and Technology(Natural Science)
关键词 KALMAN滤波 小波 神经网络 无迹变换 Kalman filter wavelet neural network unscented transform
  • 相关文献

参考文献2

二级参考文献18

  • 1Zhang Q, Benveniste A. Wavelet networks[J]. IEEE Trans on Neural Networks, 1992, 3(6): 889-898.
  • 2Oh J S, Park J B, Choi Y H. Path tracking control using a wavelet neural network for mobile robot with extended kalman filter[C]. Proc of Int Conf on Control, Automation and Systems. Gyeongju, 2003: 1283-1288.
  • 3Kim K J, Park J B,Choi Y H. The adaptive learning rates of extended kalman filter based training algorithm for wavelet neural networks[C]. 5th Mexican Int Conf on Artificial Intelligence. Apizaco, 2006: 327-337.
  • 4Wan E A, R Van Der Merwe. The unscented kalman filter for nonlinear estimation[C]. Adaptive Systems for Signal Processing, Communications, and Control Symposium. Lake Louise Alberta, 2000: 153-158.
  • 5Julier S J, Uhlmann J K, Durrant-whyte H E A new approach for the nonlinear transformation of means and covarianees in filters and estimators[J]. IEEE Trans on Automatic Control, 2000, 45(3): 477-482.
  • 6Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proc of the IEEE, 2004, 92(3): 401-422.
  • 7Julier S J. The spherical simplex unscented transformation[C]. Proc of the American Control Conf. Denver, 2003: 2430-2434.
  • 8Robert A H. On the use of backpropagation with feedforward neural network for aerodynamic estimation problem[C]. AIAA Atmospheric Flight Mechanics Conf. Monterrey, 1993: 233-241.
  • 9Dennis J L, Robert F S. Identification of aerodynamic coefficients using computational neural networks[J]. AIAA J of Guidance, Control and Dynamics, 1993, 16(6): 1018- 1025.
  • 10Ravindra V Jategaonkar. Flight vehicle system identification: A time domain methodology[C]. Progress in Astronautics and Aeronautics Series. Reston: AIAA, 2006: 205-207, 336-345.

共引文献2

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部