期刊文献+

基于改进蚁群优化的盲均衡算法研究

Research of Blind Equalization Algorithm Based on Improved Ant Colony Optimization
下载PDF
导出
摘要 基本蚁群优化算法在信号的盲均衡处理中存在收敛速度慢、容易陷入局部最小的缺点。为了解决基本蚁群算法所存在的不足,文是通过修正基本蚁群算法的转移概率公式给出一种改进的蚁群优化盲均衡算法,建立了基于改进蚁群优化算法的SIMO系统盲检测模型,并对基于基本蚁群优化盲均衡算法和改进蚁群优化的盲均衡算法性能进行仿真。仿真分析结果表明,文中提出的改进算法能很好地恢复出未知的发送信号,同时提高了计算效率和加快了收敛速度,表现出了优于文献算法的良好性能。 The basic ant colony optimization algorithm for the blind signal processing exits the shortcoming of slow convergence and easily falls into local minimum.To solve this problem,improved ant colony optimization algorithm is proposed by modifying the transition probability formula and SIMO system blind on detection model based on improving ant colony optimization algorithm is established,and simulate the performance of the basic and improved colony optimization blind equalization algorithm.The researched results show that the improved algorithm can be good to restore the unknown sent signals,improves computational efficiency and accelerates the convergence rate.It shows better performance than the literature algorithm.
出处 《计算机技术与发展》 2012年第4期141-143,共3页 Computer Technology and Development
基金 国家自然科学基金(60772060)
关键词 蚁群算法 盲均衡 盲检测 improved ant colony algorithm blind equalization blind detection
  • 相关文献

参考文献12

  • 1Dofigio M,Maniezzo V,Colorni A. Positive Feedback as a Search Strategy[R].Dipartimento di Elettronica,Politecnico di Milano,Italy,1990.
  • 2Bell J E,McMullen P R. Ant colony optimization techniques for the vehicle routing problem[J].Advanced Engineering Informatics,2004,(01):41-48.
  • 3Wang J F,Liu J H,Zhong F Y. A novel ant colony algorithm for assembly sequence planning[J].International Journal of Advanced Manufacturing Technology,2005,(11):1137-1143.
  • 4Giannakis B,Mendel J M. Identification of nonminimum phase system using higher order statistics[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1989,(03):360-377.
  • 5Godard D N. Self-recovering equalization and carrier tracking in two dimensional data communication systems[J].IEEE Transactions on Communications,1980,(11):1867-1875.
  • 6张志涌,BAI Erwei.SIMO含公零点信道的直接盲序列检测[J].电子学报,2005,33(4):671-675. 被引量:23
  • 7杨磊,于舒娟.基于精英策略的逆向蚁群优化盲检测算法[J].计算机技术与发展,2010,20(12):90-93. 被引量:3
  • 8Gleiser P,Danon L. Community structure in jazz[J].Advances In Complex Systems,2003,(06):565-573.
  • 9殷志锋,蔡子亮,田亚菲.面向多用户检测的蚁群算法及其改进[J].计算机工程与设计,2007,28(7):1511-1513. 被引量:3
  • 10张元敏;殷志锋;周雅.蚁群算法在多用户检测中的应用及其改进[J]信号处理,2007(4A):338-342.

二级参考文献27

  • 1徐精明,曹先彬,王煦法.多态蚁群算法[J].中国科学技术大学学报,2005,35(1):59-65. 被引量:66
  • 2张志涌,BAI Erwei.SIMO含公零点信道的直接盲序列检测[J].电子学报,2005,33(4):671-675. 被引量:23
  • 3刘玉霞,王萍,修春波.基于模拟退火策略的逆向蚁群算法[J].微计算机信息,2006,22(12S):265-267. 被引量:10
  • 4邱国霞,张志涌.基于离散微粒群优化的MIMO系统多用户盲检测[J].南京邮电大学学报(自然科学版),2006,26(6):27-30. 被引量:2
  • 5Tong Lang, Xu Guanghan, Thomas K. Blind channel identification and equalization using second- order statistics: A time domain approaeh[J ]. IEEE Transactions on Information Theory, 1994,40 (2) : 340 - 349.
  • 6Shen Junqiang, Ding Zhi. Zero - forcing biked equalization based on subspace estimation for multiuser systems[J ]. IEEE Transactions on Communications,2001,49(2) :262 - 271.
  • 7Manlezzo V, Colorni A, Dorigo M. Tile ant system applied to the auadratic assignment problem [ R ]. Belgium.. Universit Librede Bruxelles, 1994.
  • 8Zurada J M, Neural Networks: Binary Monotonic and Multiple - Valued [ C]// Proc. of the 30th IEEE International Symposium on Multiple - Valued Logic. Portland, Oregon: [ s. n. ] ,2000.
  • 9Dorigo M, Maniezzo V, CoIorni A. Ant system:Optimization by a colony of cooperating agents [ J ]. IEEE Transactions on Systems, Man, and Cybernetics - part B Cybernetics, 1996, 26(1):29-41.
  • 10Ding Zhi. Blind equalization and identification [ M]. [ s. l. ]: Marcel Dekker, Inc,2000.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部