期刊文献+

百kV级纳秒脉冲源的设计与实验研究 被引量:1

Design and experimental research of 100 kV nanosecond pulse generator
下载PDF
导出
摘要 GW级Tesla型脉冲源在触发开关技术研究中作为触发脉冲源使用,抖动较大,触发开关工作不稳定,需要为其研制一台触发器以解决这一问题。结合其他使用需求,设计了一台百kV级纳秒脉冲源,该脉冲源采用Tesla变压器结合单筒脉冲形成线结构,进行了Tesla变压器结构、Tesla变压器初次级参数、Tesla开路磁芯与初级电路设计,调试结果为:最高输出电压100kV,峰值功率250MW,重复频率1~100Hz,输出脉冲宽度约4ns,前沿约1ns。该脉冲源作为触发器使用,可以将GW级Tesla型纳秒脉冲源抖动由500ns降低至150ns,满足触发开关研究需求,还可用于产生超宽谱短脉冲进行辐射。 A 100 kV nanosecond pulse generator has been designed and tested,which is based on Tesla transformer and single-cylinder pulse forming line.The design of main parameters of the pulse generator is described.A high voltage nanosecond pulse generator is achieved with the highest output voltage of 100 kV,peak power up to 250 MW,pulse duration of 4 ns,rise time of 1 ns,and repetition rates ranging from 1 to 100 Hz.The pulse generator can be used as a trigger source to reduce the jitter of larger nanosecond pulse generator.Acting as the trigger source,the pulse generator reduces the jitter of GW-level Tesla pulser from 500 to 150 ns.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2012年第3期711-714,共4页 High Power Laser and Particle Beams
关键词 纳秒脉冲源 TESLA变压器 触发开关 抖动 nanosecond pulse source Tesla transformer triggered switch jitter
  • 相关文献

参考文献5

  • 1Abdallah C,Yang W,Schamiloglu E. Identification and control methods for high power electron beam-driven microwave tubes[A].1995.711-716.
  • 2Korovin S D,Mesyats G A,Pegel I V. Mechanism of microwave pulse shortening in the relativistic backward wave oscillator[A].1999.848-851.
  • 3Polevin S D,Efremov A M,Zherlitsyn A A. S-band vircator with electron beam premodulation based on compact inductive energy storage generator[A].2001.1642-1645.
  • 4王俊杰,樊亚军,石磊,刘胜,卢彦雷.纳秒级Trigatron开关触发特性[J].强激光与粒子束,2010,22(3):569-573. 被引量:4
  • 5苏建仓;彭建昌;朱晓欣.高耦合系数Tesla变压器特性分析[A],2008165-170.

二级参考文献8

  • 1Peterkin F E, Williams P F. Physical mechanism of triggering in trigatron spark gaps[J]. J Appl Phys Lett, 1988, 53(3):182-184.
  • 2Williams P F, Peterkin F E. Triggering in trigatron spark gaps: A fundamental study[J]. J Appl Phys, 1989, 66:4163-4175.
  • 3McPhee A J, MacGregor S J. An investigation of trigatron breakdown by two different mechanisms[C]//Proc of IEEE 10th Int Pulsed Power Conf. 1995:775-780.
  • 4MacGregor S J, Tuema F A, Turnbull S M, et al. The influence of polarity on trigatron switching performance[J]. IEEE Trans on Plasma Science, 1997, 25(2) :118-123.
  • 5McPhee A J, MacGregor S J. Design considerations for a low jitter trigatron[C]//Proc of IEE Colloquium on Pulsed Power. 1994:211-214.
  • 6MePhee A J. Design and testing of a 500 kV trigatron with suhnanosecond jitter[C]//Proc of IEE Colloquium on Optically Activated Switching. 1994:205-212.
  • 7Shpak V G, Shunailov S A, Yalandin M I. Investigations of compact high-current accelerators RADAN-303 synchronization with nanosecond aceuracy[C]//Proc of IEEE 10th Int Pulsed Power Conf. 1995:666-671.
  • 8Williams M D. Parameters affecting firing time of simultaneously triggered trigatron spark gap switches[R]. NASA Report TN D-5077, 1969.

共引文献3

同被引文献4

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部