期刊文献+

改进的H-矩阵线性方程组预条件迭代法的收敛定理

The Improved Convergence Theorem of Preconditioned Iterative Method for H-matrices Linear Systems
下载PDF
导出
摘要 李和黄在文[2]中提出了预条件矩阵I+S+R,当系数矩阵A为Z-矩阵时给出了预条件迭代法的收敛性结果.王和黄在文[1]中运用I+S??作为预条件矩阵,讨论了当系数矩阵A为H-矩阵时预条件Gauss-Seidel迭代法的收敛性.本文改进了文[1]中的有关结果. preconditioned proved if the improve the co Li and Huang [2] gave the preconditioner 1+ S +R and discussed the convergence of the iterative method for Z-matrices. Wang and huang [ 1 ] considered the precondi coefficient matrix A is an H-matrix,then (I+Sβα)A is also an H-matrix. rresponding results in[ 1 ]. tioner ! + Saβα and In this paper,we
作者 张世瑞
机构地区 张掖市教育局
出处 《河西学院学报》 2012年第2期53-57,共5页 Journal of Hexi University
关键词 H-矩阵 预条件矩阵 收敛性 H-matrix Preconditioner Convergence
  • 相关文献

参考文献3

二级参考文献9

  • 1李继成,黄廷祝.Z-矩阵的预条件方法[J].数学物理学报(A辑),2005,25(1):5-10. 被引量:12
  • 2Gunawardena A D, Jain S J, Snyder L. Modified iterative methods for consistent linear systems. Lin Alg Appl, 1991, 154/156: 123-143.
  • 3Kohno T, Kotakemori H, Niki H, Usui M. Improving the modified Gauss-Seidel method for Z-matrices. Lin Alg Appl,1997, 267: 113-123.
  • 4Bermaan A, Plemmons R J. Nonnegative matrices in the mathematical sciences. New York: Academic Press, 1979.
  • 5Toshiyuki Kohno,Hisashi Kotakemori,Hiroshi Nikia.Improving the modified Gauss-Seidel method for Z-matrix.Lin.Alg.Appl.,1997 (267):113-123.
  • 6Yu L,Kolotilina,Two-sided bounds for the inverse of an H-matrix.Lin.Alg.Appl.,1995(225):117-123.
  • 7Gunawardena A D,Jain S K,Snyder L.Modified iterative method for consistent linear system.Lin.Alg.Appl.,1991:154-156; 123-143.
  • 8Li W,Sun W W.Modified Gauss-Seidel type methods and Jacobi type methods for Zmatrices.Lin.Alg.Appl.,2002 (317):227-240.
  • 9Hadjidimos A,Noutsos D,Tzoumas M.More on modifications and improvements of classical iterative schemes for Z-matrices.Lin.Alg.Appl.,2003 (364):253-279.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部