期刊文献+

标准CMOS工艺载流子注入型三端Si-LED的设计与研制 被引量:6

Design and Fabrication of Three-terminal Carrier-injection-type Si-LED with Standard CMOS Technology
下载PDF
导出
摘要 采用无锡华润上华(CSMC)0.5μm标准CMOS工艺,设计并制备了一种新型的高发光功率载流子注入型三端Si-LED器件。该器件在p型衬底上进行n+掺杂,与p衬底形成两个相对的n+p结,其中一个结正向偏置,发出峰值波长在1 100 nm附近的红外光;另一个结同样正偏,作为注入结对发光进行调制。测试结果显示:第三端注入载流子明显增强了总体的发光功率,在10 mA偏置电流、3 V调制电压下,可获得1 nW的光功率,与单结相比提高了两个数量级。由于工作电压低,该器件可与目前主流的CMOS工艺共电源单芯片集成,在光电集成领域具有一定的应用前景。 This paper demonstrates a novel carrier-injection-type silicon based light emitting device (LED) with three terminals and high light emission intensity. The device was designed and fabrica- ted in the commercial standard 0.5 μm CMOS process offered by Central Semiconductor Manufactur- ing Corporation (CSMC) without any modification. Two shallow diagonal n ^+p junctions were em- bedded on the p type substrate. One junction biased in forward mode emits infrared light, and the other is also forward biased to inject carriers into the light emitting region. Experiment results show that, at 10 mA biased current and 3 V modulation voltage, 1 nW optical power can be obtained and it's approximately two orders of magnitude higher than the single junction. Due to the low operating voltage, the device can be monolithic integrated with the current mainstream silicon CMOS technolo- gy and shows a great potential in optoelectronic integration field.
出处 《发光学报》 EI CAS CSCD 北大核心 2012年第4期444-448,共5页 Chinese Journal of Luminescence
基金 国家自然科学基金重点项目(61036002)资助项目
关键词 硅基LED 标准CMOS 发光器件 正向注入发光 光电集成 Si-LED standard CMOS light emitting device carrier injection OEIC
  • 相关文献

参考文献17

  • 1Meindl J D,Chen Qiang,Davis J A. Limits on silicon nanoelectronics for terascale integration[J].Science,2001,(5537):2044-2049.
  • 2Dong Zan;Wang Wei;Huang Beiju.Silicon-based LED display array in standard CMOS technology[A]北京;IEEE,2010332-334.
  • 3Newman R. Visible light from a silicon p-n junction[J].Physical Review,1955,(02):700-703.
  • 4Sze S M,Ng Kwok K. Physics of Semiconductor Devices[M].Hoboken,New Jersey:John Wiley & Sons,Inc,2007.14-15.
  • 5Snyman L W,Aharoni H,du Plessis M. Increased efficiency of silicon light emitting diodes in a standard 1.2 μm complementary metal oxide semiconductor technology[J].Optical Engineering,1998,(07):2133-2141.
  • 6du Plessis M,Aharoni H,Snyman L W. Two-and multi-terminal CMOS/BiCMOS Si LED's[J].Optical Materials,2005,(05):1059-1063.
  • 7Snyman L W,Aharoni H,du Plessis M. Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry[J].Optical Engineering,2002,(12):3230-3240.
  • 8Snyman L W,du Plessis M,Aharoni H. Injection-avalanche based n+pn Si CMOS LED (450 ~750 nm) with two order increase in light emission intensity[J].Japanese Journal of Applied Physics,2007,(4B):2474-2480.
  • 9Lee Hsiuchih,Liu Chengkuang. Si-based current-density-enhanced light emission and low-operating-voltage light-emitting/receiving designs[J].Solid-State Electronics,2005,(07):1172-1178.
  • 10董赞,王伟,黄北举,张旭,关宁,陈弘达.Low threshold voltage light-emitting diode in silicon-based standard CMOS technology[J].Chinese Optics Letters,2011,9(8):75-78. 被引量:2

二级参考文献34

  • 1吴克跃,黄伟其,许丽.多孔硅锗的制备及其近红外发光增强[J].发光学报,2007,28(4):585-588. 被引量:5
  • 2A. E. Willner, L. Zhang, Y. Yue, and X. Wu, Chin. Opt. Lett. 08, 909 (2010).
  • 3L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
  • 4Y. Kanemitsu, K. Suzuki, S. Kyushin, and H. Matsumoto, Phys. Rev. B 51, 13103 (1995).
  • 5H. Khatun, S. S. Mou, A. A. Mortuza, and A. B. M. Ismail, Chin. Opt. Lett. 8, 306 (2010).
  • 6Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, Solid Store Electron. 40.197 (1996).
  • 7T. Komoda, J. Kelly, E. Cristiano, A. Nejirn, P. L. F. Hemment, K. P. Homewood, R. Gwilliam, J. E. Mynard, and R. J. Scal, Nucl. Inst. Meth. B 96, 387 (1995).
  • 8G. Franzo, F. Priolo, S. Coffa, A. Polman, and A. Carnera, Appl. Phys. Lett. 64, 2235 (1994).
  • 9T. D. Chen, A. Agarwal, L. M. Giovane, J. S. Foresi, L. Liao, D. R. Lim, M. T. Morse, E. J. Ouellette III, S. H. Ahn, X. Duan, J. Michel, and L. C. Kimerling, Proc. SPIE 3279, 136 (1998).
  • 10H. Presting, H. Kibbel, M. Jaros, R. M. Turton, U. Menczigar, G. Abstreiter, and H. G. Grimmeiss, Semicond. Sci. Tech. 7, 148 (1992).

共引文献4

同被引文献28

  • 1陈景东,张婷.铁钝化多孔硅的制备及光致发光机理研究[J].发光学报,2014,35(2):184-189. 被引量:3
  • 2肖德元,夏青,陈国庆.MOSFET器件回顾与展望(上)[J].半导体技术,2006,31(11):805-809. 被引量:3
  • 3Meindl J D,Ohen Q,Davis J A. Limits on silicon nano- e- lectronics for terascale integration[J]. Science, 2001,293 (5537) :2044-2049.
  • 4Papichaya C, Delphine M M, Jacopo F, et al, Integrated germanium optical interconnects on silicon substrates[J]. Nature Photonics,2014 ,8(6) :482-488.
  • 5YAN Hai,FENG Xue,ZHANG Deng-ke,et al. Compact op- tical add-drop multiplexers with parent-sub resonators on SOl substrates[J]. IEEE Photonics Technology Letters, 2013,25(5) :1462-1465.
  • 6Plessis M D, Aharoni H, Synman L W. Two- and multi-ter-minal CMOS/BiCMOS Si LEDs[J]. Optical Materials, 2005,27(5) : 1059-1063.
  • 7Synman L W, Aharoni H, Plessis M D. A dependency of quantum efficiency of Silicon CMOS n+ pp+ LEDs on Cur- rent Density [ J]. IEEE Photonics Technology Letters, 2005,17 (10) : 2041-2043.
  • 8Snyman k W, Plessis M D,Belotti E. Photonic transitions (1.4 eV-2.8 eV) in silicon p+ np* injection- avalanche CMOS LEDs as function of depletion layer profiling and defect engineering[J]. IEEE Journal of Quantum Electron- ics, 2010,46 (6) : 906-919.
  • 9LEE Hsiu-chih, LEE Shyh-cheng, LIN Yi-pen, et al. Inter- face-trap-assisted emission in Si complementary metal- oxide-semiconductor light-emitting devices[J]. Japanese Journal of Applied Physics, 2005,44(6A) : 3867 -387 1.
  • 10LEE Hsiu-chih,LIU Oheng-kuang. Si-based current-densi- ty-enhanced light emission and low-operating- voltage light-emitting/receiving designs[J], Solid-State Electron- ics,2005,49(7) : 1172-1178.

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部