期刊文献+

一类具有后向分支的SI模型

An SI Model with Backward Bifurcation
下载PDF
导出
摘要 研究了一类易感者和感染者同时具有密度制约的SI传染病模型,利用函数的几何特性讨论了平衡点的存在性和稳定性,得到后向分支存在的条件,构造了函数并根据Poincare-Bendixson定理给出该模型的全局性态分析. An SI epidemic model is studied of susceptible and infester with density-dependent both.The existence and stability of the equilibrium point are discussed using geometrical features of function,and the existent condition of backward bifurcation is concluded.The function is constructed and completely qualitative analyses of this model are obtained by means of Poincare-Bendixson theorem.
出处 《新乡学院学报》 2012年第1期11-13,共3页 Journal of Xinxiang University
基金 河南省自然科学基金项目(102102310159) 郑州航空工业管理学院青年基金项目(Q09JS03)
关键词 密度制约 平衡点 稳定性 后向分支 density-dependent equilibrium point stability backward bifurcation
  • 相关文献

参考文献7

  • 1杜艳可,徐瑞.一类具有标准发生率的SI型传染病模型的全局稳定性[J].军械工程学院学报,2008,20(2):72-75. 被引量:7
  • 2WANG Wen-di.Backward Bifurcation of an Epidemic Model with Treatment[J].Math Biosci,2006,201:58-71.
  • 3WANG Zhan-wei.Backward Bifurcation in Simple SIS Model[J].Acta Mahematica Applicatae Sinica,2009,25(1):127-136.
  • 4唐晓明,薛亚奎.具有饱和治疗函数与密度制约的SIS传染病模型的后向分支[J].数学的实践与认识,2010,40(24):241-246. 被引量:17
  • 5GOMEZ-ACEVEDO A,LI M Y.Backward Bifurcation in a Model for HTLV-I Infection of CD4+T Cells[J].Bulletin ofMathematical Biology,2005,67:101-114.
  • 6BRAUER F.Backward Bifurcation in Simple Vaccination Models[J].J Math Anal Appl,2004,289:418-431.
  • 7ZHANG Xu,LIU Xian-ning.Backward Bifurcation and Global Dynamics of an SIS Epodemic Model with GeneralIncidence Rate and Treatment[J].Nonlinear Anal RWA,2009,10:565-575.

二级参考文献5

  • 1Wendi Wang.Backward Bifurcation of an epidemic model with treatment[J].Mathematical Biosciences.2006(201):58-71.
  • 2Jingam Cui,XiaoXia Mu,Hui Wan.Saturation recovery leads to multiple endemic equilibria and backward bifurcation[J].Journal of Theoretical Biology.2008(254):275-283.
  • 3Xu Zhang,Xianning Liu.Backward bifurcation of an epidemic model with saturated treatment function[J].Journal of Mathematical Analysis and Applications.2008(348):433-443.
  • 4Wendi Wang,Ruan S.Bifurcation in an epidemic model with constant removal rate of the infectives[J].Math Anal Applications,2004(291):775-793.
  • 5Naoki Yoshida,Tadayuki Hara.Global stability of a delayed SIR epidemic model with density dependent birth and death rates[J].Computational and Applied Mathematics.2007(201):339-347.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部