摘要
为了进一步提高低分辨率遥感数据用于干旱和半干旱地区地物分类精度,该文以新疆石河子垦区为研究区,利用PSA(purposive selection algorithm)算法结合地物分布的统计特性对样本窗口进行选择,确定了最佳样本窗口组合;采用概率密度估计的方法获取了真实的隶属度函数,基于类别隶属度函数构建地物辨别模型;建立了多分辨率数据大尺度土地利用/覆盖遥感分类流程。研究结果表明,借助高空间分辨率数据提取各地物类别的精细分布特征,与Erdas非监督分类相比,模糊分类的总体分类精度提高了20%。该研究可为低分辨率数据的研究与应用提供借鉴。
To further improve classification accuracy of low-resolution remote data in arid and semi-arid areas,taking Shihezi county in Xinjiang province as the study area,sample windows were selected by combining PSA(purposive selection algorithm) algorithm and statistical properties of region features distribution and finally the best sample window combinations were identified.Authentic membership function was obtained by probability density estimation.Then features identifying model of the region was constructed based on category membership function,and the remote classification flowing chart of large-scale land using/covering was established by using multi-resolution data.The result showed that the classification accuracy of low-resolution data were effectively improved by extracting exquisite distribution characteristics of features in various regions through the high spatial indentifying data,compared with method of Erdas unsupervised classification,the accuracy of fuzzy classification method was improved 20%.The research provides a useful reference and guidance in the researching and application of low-resolution data.
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2012年第8期220-224,F0003,共6页
Transactions of the Chinese Society of Agricultural Engineering
基金
国家自然基金(40701128)
国家科技支撑计划(2007BAH12B04)
关键词
隶属度函数
遥感
分类
模糊分类
多分辨率数据
干旱半干旱地区
membership function
remote sensing
classification
fuzzy classification
multi-resolution data
arid and semi-arid area