期刊文献+

具有差异决策规则的产量博弈混沌复杂性研究 被引量:3

Research on chaos complexity of output game with different decision rules
下载PDF
导出
摘要 基于有限理性策略与朴素决策规则构建了双寡头产量博弈模型,并提出了用状态延迟和加权平均相结合的方法对竞争对手的预期产量进行估计.通过引入辅助变量并利用Jury判据,分析了该模型的稳定性.结果表明,该博弈模型有一个不稳定的边界不动点和一个局部稳定的纳什平衡点.数值仿真进一步证实,产量调节速度与权重的组合值超出局部稳定性区域时会引起复杂的产量响应,例如,分岔与混沌.获取纳什均衡利润是双方产量博弈的最优结果. Based on the bounded rational strategy and naive decision-making rule, this paper constructs a game model of duopoly outputs and proposes a combination method with state delay and weighted average to estimate the competitor's expected output. Then the model's stability is analyzed by introducing auxiliary variable and employing Jury's criteria. The results show that the game model has an unstable boundary fixed point and a local stable Nash equilibrium point. Numerical simulations further confirm that when the combination values of the output adjustment speed and the weight are outside the local stability region, the complex output response, such as bifurcation and chaos, will appear. Obtaining Nash equilibrium profits are the optimal result for the output game of both sides.
作者 卢亚丽
出处 《系统工程学报》 CSCD 北大核心 2012年第2期208-213,共6页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(71173248) 河南省科技攻关资助项目(112102210354) 河南省哲学社会科学规划资助项目(2011FJJ050) 河南省政府决策招标资助项目(2011B444)
关键词 产量博弈 有限理性 朴素策略 状态延迟 混沌 output game bounded rationality naive strategy state delay chaos
  • 相关文献

参考文献15

  • 1Ott E,Grebogi C,Yorke J. Controlling chaos[J].Physical Review Letters,1990,(11):1196-1199.doi:10.1103/PhysRevLett.64.1196.
  • 2Du Jianguo,Huang Tingwen,Sheng Zhaohan. Analysis of decision-making in economic chaos control[J].Nonlinear Analysis:Real World Applications,2009,(04):2493-2501.
  • 3卢亚丽,薛惠锋,李战国.一类经济博弈模型的复杂动力学分析及混沌控制[J].系统工程理论与实践,2008,28(4):118-123. 被引量:3
  • 4Du Jianguo,Huang Tingwen,Sheng Zhaohan. A new method to control chaos in an economic system[J].Applied Mathematics and Computation,2010,(06):2370-2380.
  • 5Chen Liang,Chen Guanrong. Controlling chaos in an economic model[J].Journal of Physics A,2007,(01):349-358.
  • 6Wu Wenjuan,Chen Zengqiang,Ip W H. Complex nonlinear dynamics and controlling chaos in a Cournot duopoly economic model[J].Nonlinear Analysis:Real World Applications,2010,(05):4363-4377.
  • 7Elsadany A A. Dynamics of a delayed duopoly game with bounded rationality[J].Mathematical and Computer Modelling,2010,(9/10):1479-1489.
  • 8Tomasz D T. Nonlinear dynamics in a heterogeneous duopoly game with adjusting players and diseconomies of scale[J].Communications in Nonlinear Science and Numerical Simulation,2011,(01):296-308.
  • 9陈国华,李煜,盛昭瀚.基于不同决策规则的产出系统的混沌与控制[J].系统工程理论与实践,2004,24(5):84-90. 被引量:8
  • 10Gu Enguo. Complex dynamics analysis on fish stock harvested by two players with heterogeneous rationality[J].Chaos,Solitons and Fractals,2009,(02):964-974.

二级参考文献30

  • 1杜建国,盛昭瀚,姚洪兴.一类混沌经济模型的阈值控制法研究[J].系统工程理论与实践,2004,24(10):27-32. 被引量:8
  • 2姚洪兴,徐峰.双寡头有限理性广告竞争博弈模型的复杂性分析[J].系统工程理论与实践,2005,25(12):32-37. 被引量:47
  • 3Agiza H N,Hegazi A S, Elsadany A A. The dynamics of Bowleys model with bounded Rationality[J]. Chaos Solitons & Fractals, 2001,9: 1705-1717.
  • 4Kopel M. Simple and complex adjustment dynamics in Cournot duopoly models[J]. Chaos Solitons & Fractals, 1996, 12:2031-2048.
  • 5Gian Italo Bischi, Michael Kopel. Equilibrium selection in a nonlinear duopoly game with adaptive expectations[J]. Journal of Economic Behavior & Organization, 2001,46:73-100.
  • 6Weihong Huang. Cautious implies profit[J]. Journal of Economic Behavior and Organization, 1995, 27:257-277.
  • 7Michael Kopel. Improving the performance of an economic system: Controlling chaos[J]. Journal of Evolutionary Economics, 1997, 7:269-289.
  • 8Ahmed E, El-misiery A, Agiza H N. On controlling chaos in an inflation-unemployment dynamical system[J]. Chaos Solitons & Fractals, 1999,10: 1567-1570.
  • 9Ott E, Grebogi C, Yorke J A. Controlling chaos [J]. Physics Review Letters, 1990, 64:1196.
  • 10Pyragas K. Continuous control of chaos by self-controlling feedback[J]. Physics Review A, 1992, 170: 421.

共引文献7

同被引文献48

  • 1纪淑娟,张纯金,梁永全,刘宝华.一次性双边讨价还价中参与者让步动机的理性分析与验证[J].中国管理科学,2013,21(S2):494-501. 被引量:3
  • 2赵来军,李旭,朱道立,李怀祖.流域跨界污染纠纷排污权交易调控模型研究[J].系统工程学报,2005,20(4):398-403. 被引量:29
  • 3潘玉荣,贾朝勇.不同理性双寡头博弈模型的复杂性分析[J].复杂系统与复杂性科学,2007,4(2):71-76. 被引量:18
  • 4Klingelhofer H. Investments in EOP-technologies and emissions trading: Results from a linear programming approach and sensitivity analysis[J]. European Journal of Operational Research, 2009, 196(1): 370-383.
  • 5Bode S. Multi period emissions trading in the electricity sector -winners and losers[J]. Energy Policy, 2006, 34(6): 680-691.
  • 6Letmathe P, Balakrishnan N. Environmental considerations on the optimal product mix[J]. European Journal of Operational Research, 2005, 167(2): 398-412.
  • 7Biermann, E European emissions trading and the international competitiveness of energy-intensive industries: A legal and political evaluation of possible supporting measures[J]. Energy Policy, 2007, 35(1): 497-506.
  • 8Ellerman, A D, Buchner, B K. The European Union emissions trading scheme: Origins, allocation, and early results[J]. Review of Environmental Economics and Policy, 2007, 1(1): 66-87.
  • 9Bischi G I, KopelM. Equilibrium selectionin anonlinear duopoly game with adaptive expectations[J]. Journal of Economic Behavior & Organi zation, 2001, 46(1): 73- 100.
  • 10Agiza H N, Elsadany A A. Chaotic dynamiesin nonlinear duopoly game with heterogeneous players[J]. Applied Mathematics and Computation 2004, 149(3): 843-860.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部