期刊文献+

模仿学习:一种新人工生命动画方法 被引量:1

Imitation Learning:A New Approach in Artificial Life Animation
下载PDF
导出
摘要 提出一种新的人工生命动画方法—模仿学习.模仿是一种非常有效的掌握运动技能的学习方式.一项运动技能为无数个相关运动序列的集合.通过模仿代表性运动序列,将蕴含的局部运动技能泛化,可获得完整的运动技能.模仿学习以运动相似度匹配和简单-复杂行为方法论为核心,并以进化计算为优化方法.模仿学习降低进化计算对传统评价函数的依赖,减少评价函数设计时间,提高优化复杂目标的能力,因此提高了制作效率.基于PhysX仿真平台,本文以人工猫的着陆行为验证了本文方法的有效性,并取得了良好的效果. This paper proposes a new artificial life animation approach—imitation learning.Imitation is a highly effective learning method for acquiring motion skill which can be regarded as a set of numerous motion sequences.Imitating representative motion sequences to acquire the local motion skill and generalizing them can achieve the entire motion skill.The cores of imitation learning are motion similarity and simple-compose behavior methodology,and evolutionary computation is used as an optimization method.Imitation learning decreases the dependence of evolutionary computation on traditional fitness function and the time spent on designing a suitable fitness function.It also increases the ability of optimizing complex goal.So it increases the effciency of producing animation.We verify our method by training an artificial cat robot to learn landing behavior based on PhysX simulation framework,which achieves a good result.
出处 《自动化学报》 EI CSCD 北大核心 2012年第4期518-524,共7页 Acta Automatica Sinica
基金 国家自然科学基金(60973063) 北京自然科学基金(4092028) 中央高校基本科研业务费专项资金(FRF-TP-09-016B) 教育部新世纪人才支持计划(NCET-10-0221)资助~~
关键词 模仿学习 简单-复杂行为方法论 运动相似度匹配 进化计算 人工生命动画 Imitation learning simple-compose behavior motion similarity matching evolutionary computation artificial life animation
  • 相关文献

参考文献20

  • 1Tu X,Terzopoulos D. Artificial fishes:physics,locomotion,perception,behavior[A].Orlando,USA:ACM,1994.43-50.
  • 2Wu J C,Popovic Z. Realistic modeling of bird flight animations[J].ACM Transactions on Graphics,2003,(03).
  • 3Liu C K,Hertzmann A,Popovic Z. Learning physics-based motion style with nonlinear inverse optimization[J].ACM Transactions on Graphics,2005,(03):1071-1081.doi:10.1145/1073204.1073314.
  • 4Sims K. Evolving virtual creatures[A].Orlando,USA:ACM,1994.15-22.
  • 5Sims K. Evolving 3D morphology and behavior by competition[J].Artificial Life,1994,(04):353-372.
  • 6Tanev I,Ray T,Buller A. Automated evolutionary design,robustness,and adaptation of sidewinding locomotion of a simulated snake-like robot[J].IEEE Transactions on Robotics,2005,(04):632-645.
  • 7Secretan J,Beato N,D'Ambrosio D B,Podriguez A Campbell A Folsom-Kovarik J T Stanley K O. Picbreeder:a case study in collaborative evolutionary exploration of design space[J].Evolutionary Computation,2011,(03):373-403.
  • 8Marriott C,Parker J,Denziiger J. Imitation as a mechanism of cultural transmission[J].Artificial Life,2010,(01):21-37.
  • 9Pullen K,Bregler C. Motion capture assisted animation:texturing and synthesis[J].ACM Transactions on Graphics,2002,(03):501-508.doi:10.1145/566570.566608.
  • 10Liu F,Zhuang Y,Wu F,Pan Y. 3D motion retrieval with motion index tree[J].Computer Vision and Image Understanding,2003,(2-3):265-284.

同被引文献12

  • 1王奇志, 徐德, 时鲁艳. 机器人模仿学习与人机交互的学习控制综述[C]//第25 届中国控制与决策会议论文集. 沈阳: 东北大学出版社, 2013: 2834-2838.
  • 2MARRIOTT C, PARKER J, DENZINGER J. Imitation asa mechanism of cultural transmission [J]. Artificial Life,2010, 16(1): 21-37.
  • 3SCHAAL S, IJSPEERT A, BILLARD A. Computationalapproaches to motor learning by imitation [J].Philosophical Transactions of the Royal Society of LondonBiological Sciences, 2003, 358(1431): 537-547.
  • 4NEHANIV C L. Imitation and social learning in robots,humans and animals [M]. Cambridge: Cambridge UnivPress, 2007.
  • 5WILLIAMS C K I, RASMUSSEN C E. Gaussian processesfor machine learning [J]. Cambridge: MIT Press, 2006,2(3): 4.
  • 6CARBONELL J G, MICHALSKI R S, MITCHELL T M.An overview of machine learning [M] 椅MachineLearning. Berlin: Springer, 1983: 3-23.
  • 7BAKKER P, KUNIYOSHI Y. Robot see, robot do: anoverview of robot imitation[C] //AISB96 Workshop onLearning in Robots and Animals. Brighton: [s. n.],1996: 3-11.
  • 8DAVENPORT W B, ROOT W L. Random signals andnoise [M]. New York: McGraw-Hill, 1958.
  • 9BRAITENBERG V. Vehicles experiments in syntheticpsychology[M]. Cambridge: MIT Press, 1986.
  • 10EPHRAIM Y, MALAH D. Speech enhancement using aminimum-mean square error short-time spectral amplitudeestimator [J]. IEEE Transactions on Acoustics, Speechand Signal Processing, 1984, 32(6): 1109-1121.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部