期刊文献+

基于树型贝叶斯网络的场景分类引擎训练算法 被引量:4

Tree structured Bayesian network learning algorithm for scene classification
下载PDF
导出
摘要 贝叶斯网络在场景分类统计模型设计中得到广泛的应用。但现有的大部分贝叶斯网络场景分类引擎没有能够充分利用贝叶斯网络丰富的知识表现能力和有效的自动学习能力。首先提出了一种灵活的树型贝叶斯网络分类引擎,用于场景分类模型的设计。然后,以条件对数似然评价为标准研究这种模型的自动学习方法,通过对分类器等价类的研究,证明了树型贝叶斯网络分类引擎自动训练过程可以忽略网络中边的方向,并提出了一个不需要对边重定向的学习算法。由于通常的场景图像编码维度较高,省略了边的重定向过程能够有效地减少模型的训练时间。实验结果验证了所提算法的平均训练时间在基准场景图像库上比传统算法的减少23.32%。 Bayesian network is an effective knowledge representation and inference engine for scene classification.However,most of current researches in semantic image understanding are limited to nave Bayesian network with strong assumptions of independence among features.To address this problem,we formalize a tree structured Bayesian network and introduce it to scene classification.In order to reduce the training time of a tree structured Bayesian network,we demonstrate that it is useless to pay attention to the directions of arcs in a tree structured Bayesian network classifier using log conditional likelihood criterion and propose an algorithm without taking arc reversal into account.Experimental results show that the average training time of our algorithm is reduced by 23.32% compared with that of traditional algorithm.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第4期863-869,共7页 Chinese Journal of Scientific Instrument
基金 北京市科学技术研究院青年骨干计划资助项目
关键词 机器学习 模式识别 计算机视觉 场景分类 贝叶斯网络 网络结构学习 machine learning pattern recognition computer vision scene classification Bayesian network network structure learning
  • 相关文献

参考文献17

  • 1BOSCH A,MUNOZ X,MARTI R. Which is the best way to organize/classify images by content[J].Image and Vision Computing,2007,(06):778-791.
  • 2张骏,高隽,谢昭,吴良海.基于统计分析Boosting的复杂场景目标识别方法研究[J].仪器仪表学报,2010,31(8):1788-1795. 被引量:7
  • 3RADSTAKE N,LUCAS P,VELIKOVA M. Critiquing knowledge representation in medical image interpretation using structure learning[J].Knowledge Representation for Health-Care,2011.56-69.
  • 4KOLLER D,FRIEDMAN N. Probabilistic graphical models:principles and techniques[M].Cambridge,MA:The MIT Press,2009.
  • 5BARRAT S,TABBONE S. Classification and automatic annotation extension of images using Bayesian network[J].Structural Syntactic and Statistical Pattern Recognition,2010.937-946.
  • 6SHARIAT S,RABIEE H R,KHANSARI M. Inferring a Bayesian network for content-based image classification[A].2009.211-218.
  • 7LI F F,FERGUS R,PERONA P. Learning generative visual models from few training examples:An incremental Bayesian approach tested on 101 object categories[J].Computer Vision and Image Understanding,2007,(01):59-70.
  • 8周志宇,张建新,刘迎春.基于贝叶斯分割和灰预测的人运动跟踪[J].仪器仪表学报,2008,29(5):1016-1019. 被引量:3
  • 9DAS M,LOUI A C B I. Event classification in personal image collections[A].2009.1660-1663.
  • 10CHENG H,WANG R. Semantic modeling of natural scenes based on contextual Bayesian networks[J].Pattern Recognition,2010,(12):4042.4054.

二级参考文献26

  • 1孔刚,张启衡,许俊平.一种复杂背景下运动扩展目标识别算法[J].仪器仪表学报,2005,26(z1):712-715. 被引量:4
  • 2黄文清,汪亚明,赵匀.基于像素概率模型的背景分割算法[J].电子测量与仪器学报,2004,18(3):18-23. 被引量:2
  • 3石君友,康锐,田仲.测试性试验中样本集的功能覆盖充分性研究[J].电子测量与仪器学报,2006,20(3):23-27. 被引量:7
  • 4孙光民,陈德明,秦圣峰,Wright D.K.,康金胜,赵越.基于RBF神经网络的人体运动跟踪与姿态预测(英文)[J].仪器仪表学报,2007,28(1):12-16. 被引量:7
  • 5YANG E QIU J, LIU G J. Research on testability prediction method based on uncertain reasoning algorithms[A]. Beijing: 7th International Symposium on Test and Measurement[C], 2007,1: 265-268.
  • 6LIU G J, YANG P, QIU J. Research on DFT-oriented uncertain dependency model[A]. Beijing: 7th International Symposium on Test and Measurement, 2007, 1: 269-272.
  • 7VIJAYA R, SHAKERI M, PATTIPATI K. Optimal and near-optimal test sequencing algorithms with realistic test models[J]. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, 1999, 29 (1): 11-26.
  • 8TU Z W.Probabilistic boosting-tree:learning discriminative models for classification.recognition,and clustering[A].IEEE International Conference on Computer Vision[C].Beijing,China,2005,2:1589-1596.
  • 9FRIEDMAN J,HASTIE T,TIBSHIRANI R.Additive logistic regression:A statistical view of Boosting[J].The Annals of Statistics,2000,38(2):337-374.
  • 10SCHAPIRE R E.The boosting approach to machine learning:an overview[A].MSRI Workshop on Nonlinear Estimation and Classification[C] ,New York,2002:149-172.

共引文献25

同被引文献56

  • 1龚伟.基于Bayes的一种改良垃圾邮件过滤模型[J].微计算机信息,2007,23(3):104-106. 被引量:2
  • 2王斌,潘文锋.基于内容的垃圾邮件过滤技术综述[J].中文信息学报,2005,19(5):1-10. 被引量:129
  • 3AYADI M E, KAMEL M S, KARRAY F. Survey on speech emotion recognition: Features, classification schemes, and databases [ J ]. Pattern Recognition, 2011,44(3) :572-587.
  • 4MMERA P K, JADHAV D V, HOLAMBE R S. Text-inde- pendent speaker identification using radon and discrete co- sine transforms based features from speech spectrogram[ J ]. Pattern Recognition,2011,44( 10-11 ) :2749-2759.
  • 5M O C,HARIHARAN M,YAACOB S,et al. Classification of speech dysfluencies with MFCC and LPCC features [ J ]. Ex- pert Systems with Applications,2012,39(2):2157-2165.
  • 6SAHIDULLAH M, SAHA G. Design, analysis and experi- mental evaluation of block based transformation in MFCC computation for speaker recognition [ J ]. Speech Commu- nication,2012,54 (4) :543-565.
  • 7HANILCI C,ERTAS F. Comparison of the impact of some Minkowski metrics on VQ/GMM based speaker recogni- tion [ J ]. Computers & Electrical Engineering, 2011, 37(1) :41-56.
  • 8TOLBA H. A high-performance text-independent speaker identification of Arabic speakers using a CHMM-based approach [ J ]. Alexandria Engineering Journal, 2011, 50( 1 ) :43-47.
  • 9VEISI H, SAMETI H. Speech enhancement using hidden markov models in Mel-frequency domain [ J ]. Speech Communication,2013,55 (2) :205-220.
  • 10CU1 X D, AFIFY M, GAO Y Qet al. Stereo hidden Markov modeling for noise robust speech recognition [ J ]. Computer Speech and Language,2013,27(2) :407-419.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部