期刊文献+

全手掌纹5类主线特征选择方法研究 被引量:6

Research on feature selection method based on five classes of palmprint principal lines on the whole palm
下载PDF
导出
摘要 为解决非接触式掌纹识别中的光线干扰和算法复杂度问题,提出采用全手掌纹5类主线作为特征的思想,并研究主线特征的选择方法,即根据感情线、理智线、生命线、事业线、成功线的条数、交点数及部分端点信息将掌纹分为9个类别。采用主线特征的优点在于能够选择到不受光线干扰和运算复杂度小的掌纹特征自动提取方法,并为手多模态决策层融合提供数据基础。根据香港科技大学(HKUST)掌纹图库实验表明,与传统的只依据感情线、理智线和生命线3条主线为特征的分类方法相比,类间样本区分度增大,类内相似样本数由传统方法的81.54%降低至35.00%,其余各类样本趋于相对均匀,即说明了该方法不仅具有较高的分辨力,而且具有可行性和优越性,为手多模态特征识别技术中主线自动提取及匹配提供了理论支撑。 To solve the problems of light interference and algorithm complexity,we propose an idea that the principal palm-lines of the palmprint on the whole hand can be used as the feature of the palmprint.We propose a feature selection method of principal palm-lines,and according to the information of the number of emotion lines,intelligence lines,life lines,career lines and success lines,the information of the number of the cross points and the information of some endpoints,the palmprint is divided into 9 patterns.The advantage of this method is that it can adopt an auto extraction method for principal palm-lines that does not suffer from the interference of stray lights and operation complexity;also it can provide a quantity of basic data for decision level multi-model hand recognition.According to the test results of the palmprint data from HKUST,the differentiation of inter-class samples increases and the likelihood number of the within-class samples decreases from 81.45% to 35.00% compared with that of the feature selection method based only on emotion line,intelligence line and life line,which indicates that the proposed method enhances the resolution power,has feasibility and superiority,and provides experiment data and theory support for the research of multi-model hand recognition methods.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第4期942-948,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60972123) 高等学校博士学科点专项科研基金(20092102110002) 沈阳市科技计划(F10-213-1-00)资助项目
关键词 掌纹主线 特征选择 多模态生物特征识别 模式识别 principal palm-line feature selection multimodal biometrics technology pattern recognition
  • 相关文献

参考文献21

二级参考文献120

共引文献110

同被引文献95

  • 1李文新,夏胜雄,张大鹏,许卓群.基于主线特征的双向匹配的掌纹识别新方法[J].计算机研究与发展,2004,41(6):996-1002. 被引量:34
  • 2KONG A,ZHANG D, KAMEL M. A survey of palm-print recognition [ J 1. Pattern Recognition, 2009, 42 ( 7 ) : 1408-1418.
  • 3BADRINATH G S, GUPTA P. Palm-print based recogni- tion system using phase-difference information [ J ]. Future Generation Computer Systems, 2012,28 ( 1 ) : 287-305.
  • 4MICHAEL G K O, CONNIE T, TEOH A B J. Touch-less palm print biometrics: Novel design and implementation [J ].Image and Vision Computing, 2008, 26 ( 12): 1551-1560.
  • 5CHORAS M, KOZIK R. Contactless palm-print and knuckle biometrics for mobile devices [ J ]. Pattern Analy- sis and Applications ,2012,15 ( 1 ) :73-85.
  • 6KANHANGAD V, KUMAR A, ZHANG D. A unified framework for contactless hand verification [ J ]. IEEE Transactions on Information Forensics and Security, 2011,6(3) : 1014-1027.
  • 7MICHAEL G K O,CONNIE T,JIN A T B. Design and im- plementation of a contactless palm print and palm vein sensor[ C ]. Proceedings of 11th International Conference on Control, Automation, Robotics and Vision, Singapore, 2010 : 1268-1273.
  • 8SANG H F, LIU F. Defocused palm-print recognition using 2DPCA [ C ]. Proceedings of International Confer- ence on Artificial Intelligence and Computational Intelli- gence ,2009 : 611-615.
  • 9WU S Q, LIN W S, XIE S L, et al. Blind blur assessment for vision-based applications [ J ]. Journal of Visual Com- munication and Image Representation, 2009, 20 4 ) : 231-241.
  • 10ZHUO S J, SIM T. Defocus map estimation from a single image [ J ]. Pattern Recognition, 2011, 44 ( 9 ) : 1852-1858.

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部