期刊文献+

基于柔性特征优化的目标稳健跟踪

Flexible Feature Optimization Based Robust Object Tracking
原文传递
导出
摘要 针对单一特征空间不足以对动态时变环境中跟踪目标进行准确表达的缺点,提出一种基于柔性加权特征的Particle Filter目标跟踪算法.首先引入"陡峭因子"这一概念对不同特征的跟踪鉴别性能进行客观评估,然后参照当前不同特征的可跟踪性能以加权组合的方式自适应生成当前最优特征,最后将生成的最优特征嵌入到Particle Filter跟踪构架中完成目标跟踪任务.该算法具备较高的柔性可对任意采用直方图表达的特征进行自适应融合.不同的视频序列实验表明该算法可动态地对异类特征进行有效融合,对复杂场景下的目标进行稳健跟踪. To overcome the disadvantages of single feature that often fails in describing the object reliably under dynamic environment, a flexible feature optimization based particle filter tracking algorithm is proposed. Firstly, the concept of sharpness factor is introduced to objectively elevate the discriminant ability for different features. Then, based on the feature's tracking property, the optimal feature under current scene is adaptively generated by combining the weighted features. Finally, the optimal feature is applied in the particle filter scheme to execute the object tracking task. The proposed algorithm is flexible and it can be extended to any feature represented by histogram. The experimental results on various videos demonstrate the effectiveness and robustness of the proposed method in multi-features fusion and object tracking.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第2期332-338,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60632050) 安徽省自然科学基金项目(No.10040606Q56) 安徽省高校省级自然科学研究项目(No.KJ2010B185 KJ2011A252)资助
关键词 目标跟踪 陡峭因子 特征融合 粒子滤波 Object Tracking, Sharpness Factor, Feature Fusion, Particle Filter
  • 相关文献

参考文献15

  • 1Yilmaz A,Javed O,Shah M. Object Tracking:A Survey[J].ACM Computing Surveys,2006,(04):1-45.doi:10.1145/1177352.1177355.
  • 2Wang H,Suter D,Schindler K. Adaptive Object Tracking Based on an Effective Appearance Filter[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,(09):1661-1667.
  • 3Avidan S. Ensemble Tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,(02):261-271.
  • 4Li Shuxiao,Chang Hongxing,Zhu Chengfei. Adaptive Pyramid Mean Shift for Global Real-Time Visual Tracking[J].Image and Vision Computing,2010,(03):424-437.
  • 5Liu Hong,Yu Ze,Zha Hongbin. Robust Human Tracking Based on Multi-Cue Integration and Mean-Shift[J].Pattern Recognition Letters,2009,(09):827-837.
  • 6虞旦,韦巍,张远辉.基于多特征空间的均值漂移算法[J].模式识别与人工智能,2009,22(4):666-672. 被引量:7
  • 7Li P,Chaumette F. Image Cues Fusion for Object Tracking Based on Particle Filter[A].Palms de Mallorca,Spain,2004.99-107.
  • 8Wang H;Suter D.Efficient Visual Tracking by Probabilistic Fusion of Multiple Cues[A]香港,2006892-895.
  • 9Triesch J,Malsburg C. Democratic Integration:Self-Organized Integration of Adaptive Cues[J].Neural Computation,2001,(09):2049-2074.
  • 10Spengler M,Schiele B. Towards Robust Multi-Cue Integration for Visual Tracking[J].Machine Vision and Applications,2003,(01):50-58.

二级参考文献13

  • 1Pavlovie V I, Sharma R, Huang T S. Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 677 - 695.
  • 2Lien C C, Huang C L. Model-Based Articulated Hand Motion Tracking for Gesture Recognition. Image and Vision Computing, 1998, 16(2) : 121 -154.
  • 3Haritaoglu I, Harwood D, Davis L S. W4: Real-Time Surveillance of People and Their Activities. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22 ( 8 ) : 809 - 830.
  • 4Wren C R, Azarbayejani A, Darrell T, et al. Pfinder: Real-Time Tracking of the Human Body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 780 - 785.
  • 5Stricker D, Kettenbach T. Real-Time and Markerless Vision-Based Tracking for Outdoor Augmented Reality Application//Proc of the IEEE and ACM International Symposium on Augmented Reality. New York, USA, 2001:189-190.
  • 6Cheng Yizong. Mean Shift, Mode Seeking and Clustering. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17 (8) : 790 - 799.
  • 7Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-Rigid Objects Using Mean Shift // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA, 2000, Ⅱ: 142 - 149.
  • 8Engelson S P, McDermott D V. Image Signatures for Place Recognition and Map Construction. Proc of SPIE, 1992, 1611:282-293.
  • 9Ojala T, Pietikainen M, Maenpaa T. Muhiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 24(7) : 971 -987.
  • 10Manjunath B S, Ohm J R, Vasudevan W, et al. Color and Texture Descriptors. IEEE Trans on Circuit and Systems for Video Technology, 2001, 11(6) : 703 -715.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部