期刊文献+

多类核共空间模式特征提取方法研究 被引量:9

Research on the Methods for Multi-class Kernel CSP-based Feature Extraction
原文传递
导出
摘要 为了缓解共空间模式(CSP)下,对脑内的源信号和记录的脑电(EEG)信号之间严格的线性模式的假设关系,需要研究一种核共空间模式(KCSP)的特征提取方法。考虑到脑-机接口(BCI)研究已经逐渐从两类的模式识别发展为多类的模式识别,因而提出了多类核共空间模式(MKCSP)的方法,该方法将KCSP方法和多类CSP方法结合起来。我们用Logistic线性分类器对提取的特征进行了分类。实验使用的数据是2005年BCI竞赛Ⅲ的数据集Ⅲ_3a。通过实验表明,本文中的方法能够从多类别的单次试验的EEG数据中提取相应的特征,并得到了较好分类结果。 To relax the presumption of strictly linear patterns in the common spatial patterns(CSP),we studied the kernel CSP(KCSP).A new multi-class KCSP(MKCSP) approach was proposed in this paper,which combines the kernel approach with multi-class CSP technique.In this approach,we used kernel spatial patterns for each class against all others,and extracted signal components specific to one condition from EEG data sets of multiple conditions.Then we performed classification using the Logistic linear classifier.Brain computer interface(BCI) competition Ⅲ_3a was used in the experiment.Through the experiment,it can be proved that this approach could decompose the raw EEG singles into spatial patterns extracted from multi-class of single trial EEG,and could obtain good classification results.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2012年第2期217-222,共6页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(60504035 61074195) 河北省自然科学基金资助项目(F2010001281 A2010001124)
关键词 脑-机接口 特征提取 多类核共空间模式 空域滤波器 聚类 Brain computer interface(BCI) Feature extraction Multi-class kernel common spatial patterns(MKCSP) Spatial filter Clustering
  • 相关文献

参考文献12

  • 1WOLPAW J R,BIRBAUMER N,MCFARLAND D J.Brain-computer interfaces for communication and control[J].Com-mun ACM,2011,54(5):60-66.
  • 2KOLES Z J.The quantitative extraction and topographicmapping of the abnormal components in the clinical EEG[J].Electroencephalogr Clin Neurophysiol,1991,79(6):440-447.
  • 3MULLER G J,PFURTSCHELLER G,FLYVBJERG H.Designing optimal spatial filters for single-trial EEG classifica-tion in a movement task[J].Clinical Neurophysiology,1999,110(5):787-798.
  • 4LIAO X,YAO D Z,WU D,et al.Combining spatial filtersfor the classification of single-trial EEG in a finger movementtask[J].IEEE Trans Biomed Eng,2007,54(5):821-831.
  • 5GUIDO D,BENJAMIN B,GABRIEL C,et al.Boosting bitrates in noninvasive EEG single-trial classifications by featurecombination and multiclass paradigms[J].IEEE Trans Bi-omed Eng,2004,51(6):993-1002.
  • 6WU W,GAO X R,GAO S K.One-versus-the-rest(OVR)al-gorithm:an extension of common spatial patterns(CSP)algo-rithm to multi-class case[C]//IEEE-EMBS.27th Annual In-ternational Conference of the Shanghai,China,2005:2387-2390.
  • 7VAPNIK V.The nature of statistical learning theory(2nd e-dition)[M].New York:Springer,2000:30.
  • 8MILLER K R,MIKA S,RATSCH G,et al.An introductionto kernel-based learning algorithms[J].IEEE Trans.NeuralNetworks,2001,12(2):181-201.
  • 9GE Z Q,YANG C J,SONG Z H.Improved kernel PCA-based monitoring approach for nonlinear processes[J].ChemEng Sci,2009,64(9):2245-2255.
  • 10SUN S L,ZHANG C S.An optimal kernel feature extractorand its application to EEG signal classi?cation[J].Neuro-computing,2005,69(13-15):1743-1748.

同被引文献84

引证文献9

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部