期刊文献+

NMF-NAD:基于NMF的全网络流量异常检测方法 被引量:4

NMF-NAD: detecting network-wide traffic anomaly based on NMF
下载PDF
导出
摘要 提出了一种基于非负矩阵分解(NMF,non-negative matrix factorization)的多元异常检测算法(NMF-NAD,NMF based network-wide traffic anomalies detection),该算法首先采用非负子空间方法对流量矩阵进行重构,然后基于重构误差利用Shewhart控制图进行异常检测。模拟实验与因特网实测数据的分析表明,NMF-NAD算法有较高的检测精度和较低的处理复杂度。 A non-negative matrix factorization(NMF) based network wide traffic anomalies detection(NMF-NAD) method was proposed.NMF-NAD firstly reconstructed the traffic matrix in the non-negative sub-space,and then detected the anomalies through Shewhart control chart based on the reconstruction error.Experimental results on both simulation and Abilene data show that NMF-NAD can achieve high detection accuracy with low complexity.
出处 《通信学报》 EI CSCD 北大核心 2012年第4期54-61,共8页 Journal on Communications
基金 国家自然科学基金资助项目(61070173 61103225) 江苏省自然科学基金资助项目(BK2009058 BK2010133)~~
关键词 网络流量 异常检测 非负矩阵分解 连续异常 network traffic anomaly detection non-negative matrix factorization continuous anomalies
  • 相关文献

参考文献20

  • 1LAKHINA A,CROVELLA M,DIOT C. Chararacterization of network-wide anomalies in traffic flows[A].2004.201-206.
  • 2LOGG C,COTTRELL L,NAVRATIL J. Experiences in traceroute and available bandwidth change analysis[A].2004.247-252.
  • 3BRUTLAG J D. Aberrant behavior detection in time series for network monitoring[A].New Orleans,Louisiana,USA,2000.139-146.
  • 4MA J,PERKINS S. Online novelty detection on temporal sequences[A].Washington,DC:USA,2003.613-618.
  • 5LAKHNA A,CROVELLA M,DIOT C. Mining anomalies using traffic feature distributions[A].Philadelphia,Pennsylvania,USA,2005.217-228.
  • 6AHMED T,COATES M,LAKHINA A. Multivariate online anomaly detection using kernel recursive least squares[A].Anchorage,Alaska,USA,2007.625-633.
  • 7AHMED T. Online anomaly detection using KDE[A].Honolulu,Hawaii,USA,2009.1-8.
  • 8REINGBERG H,SOULE A,REXFORD J. Sensitivity of PCA for traffic anomaly detection[A].2007.109-120.
  • 9BRAUKHOFF D,SALAMATIAN K,MAY M. Applying PCA for traffic anomaly detection:problems and solutions[A].2009.2866-2870.
  • 10RUBINSTEIN B I P,NELSON B,HUANG L. ANTIDOTE:understanding and defending against poisoning of anomaly detectors[A].2009.1-14.

二级参考文献14

  • 1Lakhina A, CroveUa M, Diot C. Diagnosing network-wide traf-fic anomalies[ A ]. ACM SI6COMM [ C]. Portland, Oregon, USA,2004. 123 -134.
  • 2Rubinstein B I P, Nelson B, Huang L, et al. Compromising PCA-based Anomaly Detectors for Network-wide Traffic[R]. Technical Report UCB/EECS-2008-73,2009.
  • 3Ringberg H, Soule A, Rexford J, et al. Sensitivity of PCA for traffic anomaly detection[ A]. SIGMETRICS [ C]. San Diego, California, USA, 2007.212 -223.
  • 4Hubert M,Rousseeuw P J,Branden K V. ROBPCA:a new ap-proach to robust principal component analysis [ J ]. Technometfics,2005,47(3) :64-79.
  • 5Hubert M,Rousseeuw P J,Verboven. A fast robust method for.principal components with applications to chemomenics [ J]. Chemomelrics and Intelligent Laboratory Systems, 2002, 60 (3):101-111.
  • 6Rousseeuw P J, Van Driessen K. A fast algorithm for the mini-mum covariance determinant estimator [ J ]. Techrnometrics, 1999,41(5) :212 -223.
  • 7Maronna R. Principal components and orthogonal regression based on robust scales[ J]. Technometrics,2005,47(6) :264 -273.
  • 8Torte F D L, Black M J. Robust principal component analysis for computer vision[ A ]. ICCV [ C ]. Vancouver, 2001. 321 -330.
  • 9Debruyne M, Engelen S, Hubert M, et al. Robustness and outli-er detection in chemometrics[ J]. Critical Reviews in Analytical Chemistry, 2006,36(6) :245 -256.
  • 10Hubert M, Engelen S. Robust PCA and classification in bio-sciences[J]. Bioinformafics,2004,20(2) : 1728 -1736.

共引文献5

同被引文献45

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部