摘要
提出了一种基于非负矩阵分解(NMF,non-negative matrix factorization)的多元异常检测算法(NMF-NAD,NMF based network-wide traffic anomalies detection),该算法首先采用非负子空间方法对流量矩阵进行重构,然后基于重构误差利用Shewhart控制图进行异常检测。模拟实验与因特网实测数据的分析表明,NMF-NAD算法有较高的检测精度和较低的处理复杂度。
A non-negative matrix factorization(NMF) based network wide traffic anomalies detection(NMF-NAD) method was proposed.NMF-NAD firstly reconstructed the traffic matrix in the non-negative sub-space,and then detected the anomalies through Shewhart control chart based on the reconstruction error.Experimental results on both simulation and Abilene data show that NMF-NAD can achieve high detection accuracy with low complexity.
出处
《通信学报》
EI
CSCD
北大核心
2012年第4期54-61,共8页
Journal on Communications
基金
国家自然科学基金资助项目(61070173
61103225)
江苏省自然科学基金资助项目(BK2009058
BK2010133)~~
关键词
网络流量
异常检测
非负矩阵分解
连续异常
network traffic
anomaly detection
non-negative matrix factorization
continuous anomalies