期刊文献+

封闭水平矩形腔内流体自然对流第一次逆叉形分岔的数值研究

Numerical studies of the first inverse pitchfork bifurcations for natural convections enclosed in a 2D horizontal rectangular cavity
下载PDF
导出
摘要 本文采用二阶全展开ETG(Euler-Taylor-Galerkin)分裂步有限元方法,对长宽比为3.5(L/B=3.5,如图1所示)的封闭矩形腔体内,三种Pr数条件下,定常层流范围内,流体自然对流叉形分岔随Rayleigh数的演化过程进行了数值模拟。研究结果表明,该矩形腔内对应三种Pr数条件下,流体的叉形分岔的演化过程中,在第二次模态Ⅱ型叉形分岔之后,均会出现两个较小尺度涡旋合并,突变为一个较大尺度涡旋的全新叉形分岔模态。即在某临界Ra数两侧,存在定常四涡结构和定常三涡结构两个定常解支,当系统控制参数Ra越过临界值,前者被后者突发性取代,这是完全不同于传统叉形分岔的逆叉形分岔。其数值预报,则采用分半法结合流动拓扑结构及典型截面处速度扩线上鞍点的变化来确定。计算结果表明,在计算的Pr数条件下,随Pr数的增加逆叉形分岔对应临界Ra数的取值也会提高。 A second order Euler-Taylor-Galerkin finite element method of fractional steps was used in the numerical study of the evolution processes of bifurcations for natural convections of water at three different Pr enclosed in a rectangular cavity with aspect ratio L/B=3.5(plotted in Fig.1).A new phenomenon of vortex merging in laminar flow has been found for all the three Pr.The vortex merging phenomenon discovered in the present paper is a new mode pitchfork bifurcation,the inverse pitchfork bifurcation.Moreover,aided by the variation of flow topologies and velocity profiles of velocity v vs.x at y=0.5 for each cavity,corresponding critical Rayleigh numbers were numerical predicted by using the bisection method.It can be deduced f rom the presented results that the critical Ra increased with the increase in Pr.
作者 王小华
出处 《计算力学学报》 EI CAS CSCD 北大核心 2012年第2期249-254,261,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(11072216)资助项目
关键词 封闭水平矩形腔 自然对流 第一次逆叉形分岔 涡合并 鞍点 Pr数的影响 enclosed horizontal rectangular cavity natural convection the first inverse pitchfork bifurcation cell merging saddles Prandtl numbers effect
  • 相关文献

参考文献12

  • 1代民果,高智.同位网格摄动有限体积格式求解浮力驱动方腔流[J].力学学报,2006,38(6):733-740. 被引量:8
  • 2Davis G. Natural convection of air in a square cavity:a bench mark numerical solution[J].lnt J Numer Methods Fluids,1983.249-264.
  • 3王小华,朱文芳.长方腔自然对流第一次分岔突变现象的数值分析[J].力学学报,2010,42(3):389-399. 被引量:3
  • 4Ostrach S. Natural convection in enclosures[J].Journal of Heat Transfer,1988.1175-1189.
  • 5Tony W H,Sheu H P,Rani. Multiple states,to pology and bifurcations of natural convection in a cu bical cavity[J].Computers and Fluids,2008.10111028.
  • 6Erenburg V,Gelfgat AYu,Kit E,Bar-Yoseph PZ So-lan A. Multiple states,stability and bifurcations of natural convection in a rectangular cavity with partially heated vertical walls[J].Journal of Fluid Mechanics,2003.63.
  • 7Hideshi Ishida. The second largest Lyapunov expo-nent and transition to chaos of natural convection in a rectangular cavity[J].International Journal of Heat and Mass Transfer,2006.5035-5048.
  • 8Cadou J M. A numerical method for the computation of bifurcation points in fluid mechanics[J].European Journal of Mechanics B/Fluids,2006.234-254.
  • 9Sathiyamoorthy M,Basak T,Roy S,Pop I. Steady natural convection flows in a square cavity with line-arly heated side wall(s)[J].International Journal of Heat and Mass Transfer,2007.766-775.
  • 10Prasad Y S,Das M K. Hopf bifurcation in mixed con vection flow inside a rectangular cavity[J].International Journal of Heat and Mass Transfer,2007.3583-3598.

二级参考文献29

  • 1代民果,高智.同位网格摄动有限体积格式求解浮力驱动方腔流[J].力学学报,2006,38(6):733-740. 被引量:8
  • 2Davis G. Natural convection of air in a square cavity: a bench mark numerical solution. Int J Numer Methods Fluids, 1983, 3:249-264.
  • 3Ostrach S. Natural convection in enclosures. J Heat Trans, 50th Anniversary Issue, 1988, 110:1175-1189.
  • 4Lartigue B, Lorente S, Bourret B. Multicellular natural convection in a high aspect ratio cavity: experimental and numerical results. Int J Heat Mass Transfer, 2000, 43: 3157-3170.
  • 5Chikhaoui A, Marcillat JF, Sani RL. Successive transition in thermal convection within a vertical enclosure. In: Natural Convection in Enclosures. ASME, New York, 1988. 99.
  • 6Wright JL, Jin H, Hollands KGT, et al. Flow visualization of natural convection in a tall air-filled vertical cavity. International Journal of Heat and Mass Transfer,2006, 49: 889-904.
  • 7Yooa JS, Hanb SM. Transitions and chaos in natural convection of a fluid with Pr = 0 : 1 in a horizontal annulus. Fluid Dynamics Research, 2000, 27:231-245.
  • 8Yang HX, Zhu ZJ. Numerical study of three-dimensional turbulent natural convection in a differentially heated airfilled tall cavity. International Gommunications in Heat and Mass Transfer, 2008, 35:606-612.
  • 9Bairi A. Nusselt-Rayleigh correlations for design of industrial elements: experimental and numerical investigation of natural convection in tilted square air filled enclosures. Energy Conversion and Management, 2008, 49 : 771-782.
  • 10Sheu TWH, Rani HP, Tan TC, et al. Multiple states, topology and bifurcations of natural convection in a cubical cavity. Computers & Fluids, 2008, 37:1011-1028.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部