期刊文献+

基于协方差矩阵高阶幂的二维DOA估计新算法 被引量:3

A Novel 2DDOA Estimation Algorithm Based on High-order Power of Covariance Matrix
原文传递
导出
摘要 针对稀疏分解方法进行均匀圆阵(UCA)的二维波达方向(DOA)估计运算复杂度大的问题,提出了一种基于协方差矩阵高阶幂稀疏分解的二维DOA估计新算法。该算法首先利用协方差矩阵高阶幂无需进行特征值分解和信源数估计的特性,构建了协方差矩阵高阶幂的稀疏分解向量;然后运用粒度分层思想,构造了粗区域估计和细方位估计的分层多粒度的快速分解模型,分层字典的长度大大减少,在保持估计精度的前提下,算法运算时间远小于现有的恒定冗余字典的稀疏分解方法,从而解决了基于稀疏分解的圆阵二维DOA估计问题。论文提出的算法与二维MUSIC算法相比,估计精度高,且能满足对相干信号的估计。仿真结果验证了算法的有效性和可行性。 To reduce the computational complexity in the sparse decomposition of 2D direction of arrival (DOA) estimation based on uniform circular arrays (UCAs), a novel 2D DOA estimation algorithm using sparse decomposition of higherorder power of covariance matrix was proposed. First, this method avoids the estimation of the number of signals and eigenvalue decompsition through using the highorder power of a covariance matrix as the vector of sparse decomposition. Then a fast region direction detection decomposition algorithm based on the hierarchical granularity model is put forward. This new method can construct a redundant dictionary adaptively based on the distribution of space signals, thus reducing the computational load greatly while still maintaining high estimation accuracy. Compared with the 2D MUSIC method,this algorithm not only provides better 2D DOA performance but also possesses the capability of estimating coherent signals. Simulation results confirm its effectiveness and feasibility.
出处 《航空学报》 EI CAS CSCD 北大核心 2012年第4期696-704,共9页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(60972161)
关键词 均匀圆阵 二维波达方向估计 稀疏分解 协方差矩阵 高阶幂 粒度 uniform circular array two-dimensional direction of arrival estimation sparse decomposition covariance ma-trix high order power~ granularity
  • 相关文献

参考文献5

二级参考文献62

  • 1谢纪岭,司锡才,唐建红.基于多级维纳滤波器的二维测向算法及DSP实现[J].宇航学报,2008,29(1):315-319. 被引量:4
  • 2安冬,王守觉.基于仿生模式识别和PCA/ICA的DOA估计方法[J].电子学报,2004,32(9):1448-1451. 被引量:14
  • 3安冬,王守觉.基于仿生模式识别的DOA估计方法[J].电子与信息学报,2004,26(9):1468-1473. 被引量:11
  • 4石宇,王树勋,黄志强.基于多级维纳滤波器的信源参数估计[J].吉林大学学报(工学版),2006,36(5):761-765. 被引量:1
  • 5Guo W Q, Qiu T S, and Tang H, et al.. Performance of RBF neural networks for array processing in impulsive noise environment[J]. Digital Signal Processing, 2008, 18(2): 168-178.
  • 6Wang M, Yang S, and Wu S, et al.. A RBFNN approach for DOA estimation of ultra wideband antenna array[J]. Neurocomputing, 2008, 71(4-6): 631-640.
  • 7Vigneshwaran S, Sundararajan Narasimhan, and Saratchandran P. Direction of arrival (DOA) estimation under array sensor failures using a minimal resourse allocation neural network[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(2): 334-343.
  • 8Dourado O D, Doria A D, and Da Mata W. Determination of multiple direction of arrival in antennas arrays with radial basis functions[J]. Neurocomputing, 2006, 70(1-3): 55-61.
  • 9Kuwahra Matsumoto. Experiments of direction finder by RBF neural network with post processing[J]. IEEE Electronic Letters, 2005, 41(10): 24-25.
  • 10Shieh Ching-Sung and Lin Chin-Teng. Direction of arrival estimation based on phase differences using neural fuzzy network[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(7): 1115-1123.

共引文献38

同被引文献46

  • 1郭跃,王宏远,周陬.阵元间距对MUSIC算法的影响[J].电子学报,2007,35(9):1675-1679. 被引量:28
  • 2CHEN FANGJIONG, KWONG SAM, KOK CHAIWAH. ESPRIT-Like Two-Dimensional DOA Estimation for Coher- ent Signals [ J]. IEEE Transactions on Aerospace and Elec- tronic Systems ,2010,46 ( 3 ) : 1 477-1 484.
  • 3LIANG JUNLI, LIU DING. Joint Elevation and Azimuth Di- rection Finding Using L-Shaped Array [ J ]. IEEE Transac- tions on Antennas and Propagation,2010,58 (6) :2 136- 2 141.
  • 4Y-IN JIHAO, CHEN TIANQI. Direction-of-Arrival Estima- tion Using a Sparse Representation of Array Covariance Vec- tors[ J]. IEEE Transactions on Signal Processing,2011,59 (6) :4 489-4 493.
  • 5SCHMIDT R. O. Multiple Emitter Location and Signal Pa- rameter Estimation [ J ]. IEEE Transactions, 1986, AP-34 (3) : 276-280.
  • 6ROY R K T. ESPRIT-a Subspace Approach to Estimation of Parameters of Vissoids in Noise [ J ]. IEEE Transactions on ASSP,1986,34(10):1 340-1 342.
  • 7MALIOUTOV D, (~ETIN M, WILLSKY A S. A Sparse Sig- nal Teconstruction Perspective for Source Localization with Sensor Arrays [ J ]. IEEE Transactions on Signal Process- ing,2005, 53(8) : 3 010-3 022.
  • 8GUO XIANSHENG,WAN QUN,CHANG C. Source locali- zation Using a Sparse Representation Framework to Achieve Super Resolution[ J]. Multi-Dimensional Systems and Sig- nal Processing,2010,21 (4) : 391-402.
  • 9TANG ZIJIAN, GERRIT BLACQUII~RE, LEUS G. Alias- ing-Free Wideband Beamforming Using Sparse Signal Tepr- esentation[ J]. IEEE Transactions on Signal Processing, 2011,59(7) :3 464-3 469.
  • 10LIU ZHANG-MENG, HUANG ZHI-TAO,ZHOU Y. Direc- tion-of-Arrival Estimation of Wideband Signals via Covari- ance Matrix Sparse Representation[ J ]. IEEE Transactions on Signal Processing,2011,59 ( 9 ) :4 256-4 270.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部