期刊文献+

基于稀疏分量分析的欠定盲源分离用于表面肌电信号分解 被引量:6

Underdetermined Blind Source Separation Based on Sparse Component Analysis Applied in Decomposition of Surface Electromyography
下载PDF
导出
摘要 目的解决表面肌电分解中电极数小于肌电源信号而产生的欠定问题,针对盲源分离求解欠定混合方程进行研究。方法首先采用匹配追踪(MP)算法将肌电信号稀疏化,再利用空间退化与Hough变换法估计聚类轴并求解混合矩阵,最后通过模板匹配法完成对运动单位动作电位(MUAP)波形的分类。结果从较少的观测信号中获得源信号的估计值,并得到MUAP的波形和发放间隔(IPI)信息。结论本文采用的方法对表面肌电信号的分解是有效的,且具有较好的分离效果。 Objective To achieve accurate information about motor unit(MU) basing on research of sparse component analysis(SCA),by investigating a way for solving the problem of underdetermined mixed equations in the decomposition of surface electromyography(sEMG).Methods First,matching pursuit(MP) algorithm was used to sparse the sEMG signal.Second,space degradation method and Hough transform were combined to estimate clustering axes and solve mixing matrix.At last,template matching technique was adopted to accomplish the MUAP waveform classification.Results The estimation of the source signal was got from less observed signals,and MUAP waveform template and iiter-pulse interval(IPI) were obtained too.Conclusion Experimental simulated results and real sEMG signals demonstrate that the method in this paper is effective in the decomposition of sEMG signal,and its separation results are satisfactory.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2012年第2期107-111,共5页 Space Medicine & Medical Engineering
基金 国家自然科学基金资助项目(30870656)
关键词 表面肌电信号 盲源分离 匹配追踪 空间退化 HOUGH变换 surface electromyography blind source separation matching pursuit space degeneration Hough transform
  • 相关文献

参考文献13

  • 1蔡立羽,王志中,张海虹.表面肌电信号的复杂度特征研究[J].航天医学与医学工程,2000,13(2):124-127. 被引量:19
  • 2何为,杨基海,梁政,陈香.基于生理层肌电模型的表面肌电信号仿真方法[J].航天医学与医学工程,2005,18(6):446-450. 被引量:2
  • 3Blok JH,van Dijk JP,Drost G. A high-density multichannel surface electromyography system for the characterization of single motor units[J].Review of Scientific Instruments,2002,(04):1887-1897.
  • 4Zhang YM,Amin MG. Blind separation of nonstationary sources based on spatial time-frequency distributions[J].Eurasip Journal on Applied Signal Processing,2006.1-13.
  • 5Hamid N,Chang Shey-Sheen,Carlo J. High-yield decomposition of surface EMG signals[J].Clinical Neurophysiology,2010,(10):1602-1615.
  • 6李强,杨基海,陈香,张旭.基于SEONS算法的表面肌电信号分解方法研究[J].航天医学与医学工程,2007,20(2):120-125. 被引量:7
  • 7史习智.盲信号处理--理论与实践[M]上海:上海交通大学出版社,20082-5.
  • 8Mallat S,Zhang Z. Matching pursuit with time-frequency dictionaries[J].IEEE Transactions on Signal Processing,1993,(12):3397-3415.doi:10.1109/78.258082.
  • 9Qian Shie,Chen Dapang. Signal representation using adaptive normalized Gaussian functions[J].Signal Processing,1994.111.doi:10.1016/0165-1684(94)90174-0.
  • 10王建英;尹忠科;张春梅.信号与图像的稀疏分解及初步应用[M]成都:西南交通大学出版社,200663-67.

二级参考文献33

共引文献26

同被引文献58

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部