期刊文献+

光学遥感图像变量分裂迭代快速复原算法 被引量:2

Variable Splitting Iterative Fast Algorithm for Remote Sensing Image Recovery
下载PDF
导出
摘要 为了实现光学遥感图像的快速复原,分析了已有全变差正则化复原算法存在的问题,提出基于全变差正则化图像复原的代理代价函数模型,并将该模型转化为3个子问题优化过程,设计了一种快速解析迭代的变量分裂算法。同时为了克服"阶梯效应",考虑人眼对图像平坦区域和边缘区域噪声的感知特性,给出了迭代系统中正则化参数的自适应估计。实验结果表明:本文算法在信噪比改善和计算时间都优于Wiener滤波、约束最小二乘、基于全变差梯度下降和交错子空间投影等算法,保留了图像的细节信息,减少了"寄生波纹效应"和"阶梯效应"。 In order to realize the fast deblurring for optical remote sensing images,the disadvantages of the original total variation regularization(TV) based algorithm are studied.A surrogate cost functional based on TV model is proposed.The proposed model was first transformed into three minimizing sub-problems with close form solution and then a variable splitting based fast algorithm is presented.Meanwhile,to overcome the "staircase effect",the regularization parameters are estimated and adaptively adjusted by perceptual sensitivity to different areas such as flat and edge areas.Experiments show that the proposed algorithm is superior to state-of-the-art algorithms such as Wiener filter,restricted least-squares filter,TV based gradient decreasing algorithm and alternative subspace projection algorithm with respect to signal to noise ratio and the computing time.In addition,both the Gibbs effect and staircase effect are reduced by the proposed algorithm without the loss of image information.
出处 《兵工学报》 EI CAS CSCD 北大核心 2012年第3期283-289,共7页 Acta Armamentarii
基金 国家自然科学基金项目(60802039 61171165) 南京理工大学自主科研重大研究计划项目(2010ZDJH07)
关键词 信息处理技术 遥感图像处理 复原算法 全变差 代理代价函数 快速算法 information processing remote image processing recovery algorithm total variation surrogate cost function fast algorithm
  • 相关文献

参考文献18

二级参考文献33

  • 1仲进安,郭隐彪,朱爱军.自由电子抽运X射线激光的理论探讨[J].中国激光,2005,32(1):26-30. 被引量:2
  • 2高鸿奕,谢红兰,陈建文,李儒新,徐至展,田玉莲,朱佩平,冼鼎昌.硬X射线相位衬度成像的实验研究[J].中国激光,2005,32(2):167-169. 被引量:14
  • 3郁梅,易文娟,蒋刚毅.基于Contourlet变换尺度间相关的图像去噪[J].光电工程,2006,33(6):73-77. 被引量:30
  • 4David L. Donoho. Denoising by soft-thresholding[J]. IEEE Trans. Information Theory, 1995, 41(3) : 613-627
  • 5Do M N, Vetterli M. Contourlets: Directional multiresolution image representation[C]. Proc. IEEE International Conference on Image Processing, Rochester, NY: 2002. 357-360
  • 6R. R. Coifman, D. L. Donoho. Translation-invariant de-noising [C]. Wavelets and Statistics, Springer Lecture Notes in Statistics 103, New York: Springer,Verlag, 1995. 125-150
  • 7Alyson K. Fletcher, Kannan Ramchandran, Vivek K. Goyal. Wavelet denoising by recursive cycle spinning[C]. Proc. IEEE International Conference Image Processing, Rochester, NY; 2002. 873-876
  • 8Alyson K. Fletcher, Kannan Ramchandran, Vievk K. Goyal. Iterative projective wavelet methods for denoising [C]. Proc. SPIE, 2003, 5207: 9-15
  • 9David L. Donoho, lain M. Johnstone. Threshold selection for wavelet shrinkage of noisy data [C]. Proceedings of the 16th Annual International Conference of IEEE, Engineering in Medicine and Biology Society, 1994, 1 : A24-A25
  • 10Levent Sendur, I. van W. Selesnick. Bivariate shrinkage functions for wavelet-based denoising exploiting interseale dependency[J]. IEEE Trans. Signal Processing, 2002, 50(11): 2744-2756

共引文献97

同被引文献34

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部