期刊文献+

基于改进粒子群算法的无人机爬升轨迹优化 被引量:3

Climb Trajectory Optimization of UAV Based on Improved Particle Swarm Optimization
下载PDF
导出
摘要 研究无人机控制优化爬升性能问题,由于单独提高速度或节省燃油问题,均存在互相影响。为了使无人机能够快速、省油地爬升到预定高度,综合考虑了油耗和时间这两个因素。在分析了无人机爬升段数学模型的基础上,提出将油耗和时间的综合运营成本作为优化指标,并提出了一种改进粒子群算法的无人机爬升轨迹优化方法。将无人机轨迹优化问题转化为有约束的参数优化问题,并用改进粒子群算法进行参数优化,从而得到综合指标最优的爬升轨迹。对某无人机实例进行爬升轨迹优化,仿真结果比传统方法更节省了运营成本,证明了改进方法的优越性。 In order to achieve the desired height economically and quickly,this paper considered the two factors of fuel cost and time.First,the paper studied the mathematical model of UAV climb trajectory optimization,and then made the total cost of fuel and time as the performance index.Second,this paper proposed a method of Unmanned Aerial Vehicle(UAV) climb trajectory optimization based on particle swarm optimization(PSO) and turned the problem of UAV trajectory optimization into the problem of constrained parameter optimization,and found the optimal parameters using PSO.In the end,validation was made with a UAV,and the result turned to be saving more operational costs,which proves the method is better.
出处 《计算机仿真》 CSCD 北大核心 2012年第4期92-94,366,共4页 Computer Simulation
关键词 无人机 数学模型 爬升段轨迹优化 粒子群算法 UAV Mathematical model Climb trajectory optimization Particle swarm optimization(PSO)
  • 相关文献

参考文献6

二级参考文献24

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2付国江,王少梅,刘舒燕,李宁.含边界变异的粒子群算法[J].武汉理工大学学报,2005,27(9):101-103. 被引量:10
  • 3董元,王勇,易克初.粒子群优化算法发展综述[J].商洛学院学报,2006,20(4):28-33. 被引量:10
  • 4朱丽莉,杨志鹏,袁华.粒子群优化算法分析及研究进展[J].计算机工程与应用,2007,43(5):24-27. 被引量:57
  • 5飞机飞行性能计算手册.西安:飞行力学杂志社,1987
  • 6M Pachter,P Chandler.Challenges of Autonomous Control[J].IEEE Control Systems Magazine,1998,18(4):92-97.
  • 7W M Timothy,B RandalW.Trajectory Planning For Coordinated Rendevous of Unmanned Air Vehicles[J].A IAA-2000-4339-CP,2000.
  • 8M Lovbj erg,T K Rasmussen,T Krink.Hybrid particle swarm optimization with breeding and subpopulations[C].Process of the Third Genetic and Evolutionary Computation Conference,2001.
  • 9J Kennedy, REberhart. Particle Swarm Optimization [ C ]. IEEE International Conference on Neural Networks, Perth, Australia. 1995. 1942 - 1948.
  • 10R Eberhart, J Kennedy. A New Optimizer Using Particle Swarm Theory[ C]. In: Proc of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.39-43.

共引文献68

同被引文献16

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部