期刊文献+

自适应均值漂移算法目标跟踪检测仿真研究 被引量:6

Target Tracking of Adaptive Scale Model Based on Cam Shift
下载PDF
导出
摘要 研究运动物体目标跟踪精确度问题,由于存在遮挡和多光源的噪声影响检测精度,而且运动目标的跟踪是在连续的图像帧间创建位置、速度、形状等存在匹配问题。传统的目标跟踪算法由于目标的动态移动速度大,而容易导致跟踪丢失目标。为了解决上述问题,提出了一种改进的基于自适应均值移动(Cam Shift)目标跟踪新算法。主要难点技术问题是提取了多运动目标视频图像,进行了背景分离。算法是一种颜色跟踪算法,根据多次迭代的计算结果,自适应调整图像,实现对运动目标的实时跟踪。仿真结果表明,提出的改进目标跟踪算法的跟踪精度和滤波效果有了较大提高,同时具有较强的鲁棒性能。 The precision of moving object tracking problem.Moving target tracking is the image frame to create a continuous position,velocity,shape and other relevant characteristics of the corresponding matching,target tracking algorithm for the traditional goal of the dynamic moving speed as large and easily lead to loss of target issues such as defect tracking,in order to solve the above problem,an improved adaptive mean shift based(Cam Shift) Target Tracking Algorithm.The algorithm is a color-based tracking algorithm,based on multiple iterations of the calculation results,adjusts the image sequence adaptive search window size and position,resulting in the current image in the center of the target to achieve real-time tracking of moving targets.Simulation results show that the proposed target tracking algorithm to improve the tracking accuracy and filtering effect has been greatly improved,and has strong robustness.
机构地区 河南城建学院
出处 《计算机仿真》 CSCD 北大核心 2012年第4期290-292,396,共4页 Computer Simulation
关键词 目标跟踪 自适应均值移动 核函数 迭代 Target tracking Adaptive mean shift Kernel function Iteration
  • 相关文献

参考文献10

二级参考文献33

  • 1薛锋,刘忠,张晓锐.高斯和粒子滤波器及其在被动跟踪中的应用[J].系统仿真学报,2006,18(z2):900-902. 被引量:3
  • 2邹国辉,敬忠良,胡洪涛.基于优化组合重采样的粒子滤波算法[J].上海交通大学学报,2006,40(7):1135-1139. 被引量:43
  • 3李景熹,王树宗.UPF算法及其在目标跟踪问题中的应用[J].系统仿真学报,2007,19(3):675-677. 被引量:10
  • 4M Sanjeev Andampalam, Simon Maskell, N J Gordon, Tim Clapp. A tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING (S1053-587X (02)00569-X), 2002, 50(2): 174-188.
  • 5N J Gordon, D J Salmond, A F M Smith. Novel Approach to Nonlinear/ Non-Gaussian Bayesian State Estimation [J]. IEEE Proceedings-F (S0-7803-2914-7), 1993, 140(2): 107-111.
  • 6R V Merwe, A Doucet, Nando De Freitas, E Wan. The Unsented Particle Filter [R]// Technical Report, CUED/F-INPENG/TR 380. UK: Engineering Department, Cambridge University, 2000.
  • 7P M Djuric, J Kotecha, Jiangqui Zhang, Yufei Huang, T Ghirmai, M Bugallo, J Miguez. Particle Filtering [J]. IEEE SIGNAL PROCESSING MAGAZINE (S1053-5888), 2003, 20(5): 19,38.
  • 8Fredrik Gustafsson, Fredrik Gunnrsson, Niclas Bergman, Urban Forssell, Jonas Jansson, Per-Johan Nordlund. Particle filters for positioning, navigation and tracking [J]. IEEE Transaction on Signal Processing (S1053-587X (02)00554-8), 2002, 50(2): 425-437.
  • 9J D Hol. Resampling in Particle Filters [R]// Intership report, LiTH-ISY-EX-ET-0283-2004. Sweden: LinkOping University, 2004.
  • 10R Douc, O Cappe, E Moulines. Comparison of Resampling Schemes for Particle Filtering [J]. Proceedings of 4^th international Symposium on Image and Signal Processing and Analysis (ISPA) (S1845-5921), 2005, 9: 64-69.

共引文献348

同被引文献61

  • 1毕华军,梁家红,吴冰.粒子滤波器在图像序列目标跟踪中的应用[J].计算机仿真,2006,23(1):184-186. 被引量:7
  • 2宋野,齐志泉,王来生.多示例在线学习方法在遮挡目标跟踪中的应用[J].中南大学学报:自然科学版,2011,42(1):666-671.
  • 3BERGH F V D. An analysis of particle swarm optimizers [ D ]. [ S. 1. ] i University of Pretoria,2001:25-28.
  • 4SUN Jun, FENG Bin, XU Wen-bo. Particle swarm optimization with particles having quantum behavior [ C ]//Proc of IEEE Congress on Evolutionary Computation. 2004:325-331.
  • 5LAND E H. The Retinex theory of color vision[J]. Scientific Ameri- can,1977,237(6) :108-128.
  • 6BARNARD K, FUNT B. Investigations into multi-scale Retinex[ M]. [ S. 1, ] : Wiley, 1999.
  • 7SUN Jun, XU Wen-bo, LIU Jing. Parameter selection of quantum-be- haved particle optimization[ C]//LNCS, vol 3612.2005:543-552.
  • 8CHENG H D, SHI X J. A simple and effective histogram equalization approach to image enhancement [ J ]. Digital Signal Processing, 2004,14(2) :158-170.
  • 9FLOHR T G, STIERSTORFER K, ULZHEIMER S, et al. Image re- construction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot[ J]. Meal Phys,2005,32(8 ) :2536-2547.
  • 10N Paragios and R Deriche. Godesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 22(3) :266 -280.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部