期刊文献+

基于特征互补图像的人脸识别仿真研究

Rapid Feature Fusion of 2DCCA Based on Complementary Feature Image and Face Recognition
下载PDF
导出
摘要 研究人脸识别精度问题。由于人脸图像中存在大量干扰信息的缺点,而造成了人脸识别正确率下降,为了解决上述问题,提出了一种基于特征互补图像快速特征融合算法。算法通过对人脸图像的位平面切片图像分析,采用位平面图像分解法,通过各种合成策略构造多幅样本图像。并突出高位平面图像,采用两种加权策略将每一幅人脸图像样本都生成"特征互补图像"。然后,直接用图像的二维典型相关分析(2DCCA)法对两种特征互补图像进行特征抽取。最后通过在ORL国际标准人脸库上进行的实验,结果表明,高位平面图像的典型相关鉴别特征提高了正确识别率,并且因为摒弃了原始人脸图像的大部分干扰信息所以具有更强的鲁棒性。 For there is a lot of interference information in face images,firstly proposed a new sample augment method based on Bit-cutting face images.It slices the image at eight different planes(bit-planes).Then,it augments new training samples by combining the bit-planes images.By using two kinds of weighting strategy to highlight the high plane images,two kinds of new training samples for each one face image samples are generated called "two complementary feature image".Finally,two dimensions canonical correlation analysis(2DCCA) works on the "complementary feature image" for feature fusion.The experimental results on ORL face database verify the effectiveness of the proposed method.Because the proposed method abandoned most interfere information of the primitive face images and therefore it have a stronger robustness.
作者 陈宏 胡宁静
出处 《计算机仿真》 CSCD 北大核心 2012年第4期320-323,共4页 Computer Simulation
关键词 位平面图像 特征互补图像 二维典型相关分析 特征融合 人脸识别 Bit-cutting image Complementary feature image Two dimensions canonical correlation analysis(2DCCA) Feature fusion Face recognition
  • 相关文献

参考文献6

二级参考文献45

  • 1宋枫溪,程科,杨静宇,刘树海.最大散度差和大间距线性投影与支持向量机[J].自动化学报,2004,30(6):890-896. 被引量:58
  • 2张尧庭.多元统计分析引论[M].北京:科学出版社,1999.35-46.
  • 3Y. S. Huang, C. Y. Suen. A method of combining multiple experts for the recognition of unconstrained handwritten numerals.IEEE Trans. PAMI, 1995, 7(1): 90~94.
  • 4A.S. Constantinidis, M. C. Fairhurst, A. F. R. Rahman. A new multi-expert decision combination algorithm and its application to the detection of circumscribed masses in digital mammograms.Pattern Recognition, 2001, 34(8): 1528~ 1537.
  • 5C.J. Liu, H. Wechsler. A shape-and-texture-based enhanced Fisher classifier for face recognition. IEEE Trans. Image Processing, 2001, 10(4): 598~608.
  • 6Yang Jian, Yang Jingyu. Generalized K-L transform based combined feature extraction. Pattern Recognition, 2002, 35 (1):295~297.
  • 7H. Hotelling. Relations between two sets of variates. Biometrika,1936, 28:321~377.
  • 8Z. Jin, J. Y. Yang, Z. S. Hu. Face recognition based on uncorrelated discriminant transformation. Pattern Recognition,2001, 34(7): 1405~1416.
  • 9Z. Q. Hong. Algebraic feature extraction of image for recognition. Pattern Recognition, 1991, 24(3): 211~219.
  • 10M. Turk, A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71~86.

共引文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部