期刊文献+

基于网格的混合微粒群算法解决任务调度问题 被引量:3

Grid-based Hybrid Particle Swarm Optimization algorithm for task allocation problem
下载PDF
导出
摘要 网格任务分配是一个NP难问题,结合微粒群优化(Particle Swarm Optimization,PSO)算法,和网格自身的特性,提出了基于网格的混合微粒群算法。算法对问题的解空间进行变换、重定义,使之更加符合PSO算法的求解环境,实现了网格资源的优化分配。与离散微粒群(DPSO)算法和遗传算法进行了仿真比较,结果表明,新的PSO算法具有较好的性能。 Grid task allocation is a typical NP complete problem. According to the essence of grid and based on Particle Swarm Optimization algorithm, this paper proposes a new algorithm called Grid-based Hybrid Particle Swarm Optimization(GHPSO). This algorithm transforms and redefines the problem' s resolution space to make it more suitable to the problem-solving enviromrtent of PSO algorithm, achieves the optimal allocation of grid resources. The simulation results compared with the Discrete Particle Swarm Optimization algorithm and Genetic Algorithm show that this algorithm has better performance.
作者 叶春晓 罗娟
出处 《计算机工程与应用》 CSCD 2012年第12期34-37,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60803027)
关键词 网格任务分配 微粒群优化算法 解空间变换 grid task scheduling Grid-based Hybrid Particle Swarm Optimization (GHPSO) problem' s resolutionspace transformation
  • 相关文献

参考文献4

二级参考文献25

  • 1钟一文,杨建刚.异构计算系统中独立任务调度的混合遗传算法[J].北京航空航天大学学报,2004,30(11):1080-1083. 被引量:9
  • 2EBERHART R C, KENNEDY J. A new optimizer using particles swarm theory [A]. Proceeding of Sixth International Symposium on Micro Machine and Human Science [C]. Piscataway, NJ, USA: IEEE Service Center, 1995. 39-43.
  • 3LI Junjun, WANG Xihuai. A modified particle swarm optimization algorithm [A]. Proceedings of the 5th World Congress on Intelligent Control and Automation [C]. Piscataway, NJ,USA: IEEE Service Center, 2004. 354-356.
  • 4WANG Xihuai, LI Junjun. Hybrid particle swarm optimization with simulated annealing [A]. Proceedings of 2004 International Conference on Machine Learning and Cybernetics[C]. Piscataway, NJ, USA: IEEE Service Center, 2004.2402-2405.
  • 5DANTZING G, RAMSER J. The truck dispatching problem [J]. Management Science, 1959, 10(6): 80-91.
  • 6CLARKE G, WRIGHT J. Scheduling of vehicles from a central depot to number of delivery points [J]. Operations Research, 1964, 12(4): 12-18.
  • 7刘勇 康立山 陈毓屏.非数值并行算法-遗传算法[M].北京:科学出版社,2000..
  • 8Kennedy J, Eberhart R. Particle Swarm Oprimzation In: Proc of the IEEE International Conference on Neural Networks. Perth, Australia, 1995, 1942-1948
  • 9Clerc M. Discrete Particle Swarm Optimization. In: Onwubolu G C, Babu B V, eds. New Optimization Techniques in Engineering. Heidelberg, Germany: Springer-Verlag, 2004, 219-240
  • 10Cagnina L., Esquivel S, Gallard R, Particle Swarm Optimization for Sequencing Problems: A Case Study, In: Proc of the Congress on Evolutionary Computation. Oregon, Portland, 2004,Ⅰ:536-541

共引文献51

同被引文献35

  • 1彭磊,张建平,吴耀武,娄素华.基于GA、PSO结合算法的交直流系统无功优化[J].高电压技术,2006,32(4):78-81. 被引量:23
  • 2何佳,吴耀武,娄素华,熊信艮.基于微粒群优化算法的电力系统动态无功优化[J].电网技术,2007,31(2):47-51. 被引量:28
  • 3胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 4李济泽.基于粒子群遗传优化算法的多机器人任务分配研究[J].机械与电子,2007,25(10):45-48. 被引量:4
  • 5Kyung-Hyun C,Dong-Soo K,Yang-Hoi D.Multi-agent based task assignment system for virtual enterprises[J].Robotics and Computer Integrated Manufacturing,2007,23 : 624-629.
  • 6Shen Chenglin.Decision models of task assignment for virtual enterprise based on multi-agent theory[C]//Proceedings Inter- national Conference on Management and Service Science, 2009.
  • 7Lin W,Bymes C.Control of discrete-time nonlinear system[J]. IEEE Transactions on Automatic Control,1996,41(4):494-510.
  • 8Angeline P J.Evolutionary optimization versus particle swarm optimization : philosophy and performance difference[C]// Proc of the 7th Annual Conf on Evolutionary Programming, Germany, 1998.
  • 9Ertuqrul I, Karakasoqlu N.Performance evaluation of Turkish cement firms with fuzzy analytic hierarchy process and TOPSIS methods[J].Expert Systems with Application,2009, 36( 1 ) : 702-715.
  • 10Dai C H,Chen W R,Zhu Y F,et al. Reactive power dispatch considering voltage stability with seeker optimization algo- rithm [ J ]. Electric Power Systems Research, 2009,79 ( 10 ).

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部