期刊文献+

一种k均值和神经网络集成的语音识别方法 被引量:2

Speech recognition based on k-means clustering and neural network ensemble
下载PDF
导出
摘要 提出了一种基于k均值聚类和BP神经网络集成的语音识别方法,该方法以神经网络集成模型为基础,利用k均值聚类算法选择部分有差异性的个体神经网络再进行集成学习,既克服了单个BP网络模型容易局部收敛和不稳定性的缺点,又解决了传统集成方法训练时间长和个体网络差异性不明显的问题。通过对非特定人孤立词的语音识别的实验,证实了该方法的有效性。 In this paper,a method of speech recognition based on k-means clustering and neural network ensemble is proposed.The method is based on neural network model.After a number of individual neural networks are trained,the k-means clustering algorithm is used to select a part of the trained individual networks'weights and thresholds with small similarity.Many neural networks with the selected weights and thresholds are combined.The method not only overcomes the shortcomings that single BP neural network model is easy to local convergence and lack of stability,but also solves the problems that the traditional method in training lasts for a long time and the differences of individual network are not obvious.The experimental results prove the effectiveness of this method.
出处 《计算机工程与应用》 CSCD 2012年第12期144-147,共4页 Computer Engineering and Applications
基金 广东省科技计划项目(No.2008B080701007) 广东省自然科学基金(No.9151042001000017)
关键词 K均值聚类 神经网络集成 语音识别 k-means clustering neural network ensemble speech recognition
  • 相关文献

参考文献12

二级参考文献33

  • 1张晓惠,林柏钢.基于特征选择和多分类支持向量机的异常检测[J].通信学报,2009,30(S1):68-73. 被引量:20
  • 2徐勋华,王继成.支撑向量机的多类分类方法[J].微电子学与计算机,2004,21(10):149-152. 被引量:27
  • 3DIENERICH T G. Machine Learning Research Four Current Directions [J]. AI Magazine, 1997, 18 (4) : 97-136.
  • 4SCHAPIRE R E. The Strength of Weak Leamability [J]. Machine Learning, 1990, 5 (2) : 197-227.
  • 5FREUND Y. Boosting a Weak Algorithm by Majority [J]. Information and Computation, 1995, 121 (2) : 256-285.
  • 6FREUND Y, SCHAPIRE R. A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting [ J ]. Journal of Computer and System Sciences, 1997, 55 (1) : 119-139.
  • 7BREIMAN L. Prediction Games and Arcing Algorithms [J]. Neural Computation, 1997, 11 (7) : 1493-1517.
  • 8DRUCKER H. Improving Regressors Using Boosting Techniques [ C ] // Proceedings of the Fourteenth International Conference on Machine Learning. San Francisco: [s. n. ], 1997: 107-115.
  • 9TIAN Hui-xin, MAO Zhi-zhong, WANG Yan. Hybrid Modeling of Molten Steel Temperature Prediction in LF [ J]. ISIJ International, 2008, 48 (1) : 58-62.
  • 10Chen Sinhorng,IEEE Trans Speech Audio Processing,1995年,3卷,2期,141页

共引文献287

同被引文献27

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部