期刊文献+

基于特征点类别可分性判断准则的图像分类 被引量:1

Image classification based on feature point class separability criterion
下载PDF
导出
摘要 针对图像分类特征点特性界定模糊,导致相似性度量误差较大的问题,提出采用特征点类别可分性判断准则的图像分类方法。结合信息熵理论提取图像特征点的可分性特性,根据图像特征向量标识决策属性的不同性质,计算特征向量间的可分性距离值,得到最近邻特征向量集,从待分图像各特征向量与最近邻特征向量集标识类别的平均距离,及平均可分性度量值两方面定义新的图像类别判断准则。理论分析与Caltech256图像库仿真实验表明,基于特征点类别可分性判断准则有效地提高了图像的分类准确率。 Similarity measurement of image classification leads to outliers caused by vague boundary of feature points.To address this problem,an image classification method based on feature point class separability criterion is proposed.This paper combines information entropy theory used to extract the separability characteristics of image features.The separability distance values between feature vectors are calculated,and the nearest neighbor feature vector set is obtained according to the different nature of marking decision attribute by feature vectors.A new image type criterion is defined from two ways,the one is average distance between every feature vector of test image and the marking image class by nearest neighbor feature vector set,the other is average separability measurement value.The theoretical analysis and the Caltech256 simulation experiment show that compared with other methods,the feature point class separability criterion improves the image classification accuracy effectively.
作者 刘晋胜
出处 《计算机工程与应用》 CSCD 2012年第12期173-178,共6页 Computer Engineering and Applications
基金 广东省教育部产学研结合项目(No.2011A090200088) 广东省石化装备故障诊断重点实验室资助
关键词 图像分类 可分性 距离度量 决策属性 最近邻分类 image classification separability distance measurement decision attribute nearest neighbor classification
  • 相关文献

参考文献11

二级参考文献42

  • 1黄勇,王崇骏,王亮,杭燕,陈兆乾.基于形状不变矩的图像检索算法的研究[J].计算机应用研究,2004,21(7):256-257. 被引量:21
  • 2骆知萌,田庆久,惠凤鸣.用遥感技术计算森林叶面积指数——以江西省兴国县为例[J].南京大学学报(自然科学版),2005,41(3):253-258. 被引量:32
  • 3Gustavo C V. Kernel-based methods for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43 (6) : 1351-1362.
  • 4Hughes G F. On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 19 6 8, 14 ( 1 ) : 5 5 - 6 3.
  • 5Melgani F. Classification of hyperspectral remote sensing images with support vector machines. IEEE Transaction ons Geoscience and Remote Sensing, 2004, 42(8) :1778- 1790.
  • 6Deng H, Clausi D A. Advanced Gaussian MRF totation-invariant texture features for classification of remote sensing imagery. Proceedings of the IEEE CVPR' 2003. Toronto, Canada, IEEE, 2003,38-42.
  • 7Kumar M. A non-parametric classification strategy for remotely sensed imagery: Experiments and Analysis. Congress on Image and Signal Processing. Hainan, China, IEEE, 2008,23-25.
  • 8Rasmussen C E. Gaussian processes for machine learning. USA: The MIT Press, 2006, 41-47.
  • 9Taylor J S. Kernel methods for pattern analysis. UK: Cambridge University Press, 2004, 291-297.
  • 10Horn R A, Johnson C R. Matrix analysis. UK: Cambridge University Press, 1985, 163- 168.

共引文献36

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部