期刊文献+

一种快速而精确的虹膜定位方法 被引量:1

Rapid and accurate iris location algorithm
下载PDF
导出
摘要 快速虹膜定位是实现虹膜自动识别系统的基础。从虹膜图像特点出发,提出了基于分块统计灰度平均值的方法来确定虹膜内圆圆心和半径。利用不变矩的识别方法,不需要对任何带估参数进行累积计数,就可快速求出外边缘的参数,计算量小,计算时间短。通过对中科院自动化所CASIA虹膜数据库50组图像的虹膜定位测试结果表明,该方法定位准确率达到95%。 The key step to construct the system of automatic iris recognition is how to locate the iris quickly.To achieve such goal,according to the characteristics of the iris image,an algorithm,which is based on block statistics of average grey,is proposed to determine the centre and radius of the iris inner circle.Using moment invariants on edge regions,the parameters symbols of the iris outer circle can be recognized conveniently and quickly,avoiding the use of accumulated count of any parameters.Algorithms proposed in this paper have been simulated on 50 sets of images from CASIA iris image database and the locating accurate rate is up to 95%.
作者 邵宇
出处 《计算机工程与应用》 CSCD 2012年第12期183-185,193,共4页 Computer Engineering and Applications
关键词 虹膜定位 灰度平均 不变距 iris location gray mean block moment invariants
  • 相关文献

参考文献8

  • 1王成儒,胡正平.基于几何特征的虹膜定位算法[J].中国图象图形学报(A辑),2003,8(6):683-685. 被引量:27
  • 2王蕴红,朱勇,谭铁牛.基于虹膜识别的身份鉴别[J].自动化学报,2002,28(1):1-10. 被引量:259
  • 3Liu Jin,Zhang Tianxu.Fast algorithm for generation of momentinvariants[].Pattern Recognition.2004
  • 4Daugman J G.Probing the Uniqueness and Randomness of Iris Codes:Results From 200 Billion Iris Pair Comparisons[].Proceedings of Tricomm.2006
  • 5Daugman JG.High confidence visual recognition of persons by a test of statistical independence[].IEEE Transactions on Pattern Analysis and Machine Intelligence.1993
  • 6Daugman J.How Iris Recognition Works[].IEEE Transactions on Circuits and Systems for Video Technology.2004
  • 7Wildes RP.Iris recognition: an emerging biometric technology[].Proceedings of Tricomm.1997
  • 8Hu MK.Visual pattern recognition by moment invariants[].IRE Transactions on Information Theory.1962

二级参考文献2

  • 1王成儒 胡正平 练秋生 等.虹膜定位的快速算法[J].中国图象图形学报,2001,6(9):103-107.
  • 2何家峰,廖曙铮,叶虎年,李柱.虹膜定位[J].中国图象图形学报(A辑),2000,5(3):253-255. 被引量:78

共引文献273

同被引文献13

  • 1冈萨雷斯.数字图像处理[M].2版.北京:电子工业出版社,2008.
  • 2Daugman J.New methods in iris recognition[J].IEEE Trans Systems,Man,Cybernetics B,2007,37(5):1167-1175.
  • 3Bowyer K W,Hollingsworth K,Flynn P J.Image understanding for iris biometrics:A survey[J].Computer Vision and Image Understanding,2008,110(2):281-307.
  • 4Burge M,Bowyer K.Handbook of iris recognition[M].New York:Springer Verlag,2013:20-48.
  • 5He Z,Tan T,Sun Z.Iris Localization via Pulling and Pushing[C]//International Conference on Pattern Recognition.HongKong:IEEE Computer Society,2006:557-561.
  • 6Jan F,Usman I,Agha S.Reliable iris localization using Hough transform,histogram-bisection,and eccentricity[J].IEEE Transaction on Signal Processing,2013,93(1):230-241.
  • 7Li P,Liu X,Xiao L,et al.Robust and accurate iris segmentation in very noisy iris images[J].Image and Vision Computing,2010,28(2):246-253.
  • 8Masek L.Recognition of human iris patterns for biometric identification[D].Austra-lia:University of Western Australia,2003:26-40.
  • 9Chinese Academy of Sciences.CASIA-iris-thousand[DB/OL].http://biometrics.idealtest.org/,2010.
  • 10Sahmoud SA,Abuhaiba IS.Efficient iris segmentation method in unconstrained environments[J].Pattern Recognition,2013,46(12):3174-3185.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部