期刊文献+

基于压缩感知理论的图像融合方法 被引量:8

Method of image fusion based on compressed sensing
下载PDF
导出
摘要 基于压缩感知(Compressed Sensing,CS)理论,提出了一种采样点少且结构简单易实现的图像融合方法。对需要处理的两幅或多幅图像进行小波变换,分别对得到的小波系数进行稀疏处理得到稀疏矩阵,通过系数绝对值较大法进行融合,对融合后的系数矩阵通过随机观测获取压缩采样,而图像恢复则是对得到的压缩采样通过求解最优化的问题得到。由于对小波系数进行了稀疏处理,故该方法可以用少量的采样点来恢复图像。实验结果表明,在相同采样点下,该方法得到的图像质量(PSNR)明显优于传统的系数绝对值较大法融合;在少量采样点下,采用该方法也可以使融合的图像达到较好的效果。 Based on Compressed Sensing(CS),a new image fusion method is presented.The new method can take reduced samples,and has the advantages of simple structure and easy implementation.The method decomposes two or more original images using wavelet transform,and gets the sparse matrix by the wavelet coefficient sparse representation,and fuses the sparse matrices with the coefficients absolute value maximum scheme.Randomly observed,it can receive the compressed sample.At the fusing end,the fusion image is recovered from the reduced samples by solving the optimization.The proposed method can construct the fusion image with less measurements because the wavelet coefficients are sparse presentation.Simulation results show the proposed method exhibits its superiority over the traditional method of the maximum absolute values fusion with the same sampling rates,and under the lower sampling,it can also achieve better fusion performance.
出处 《计算机工程与应用》 CSCD 2012年第12期194-197,共4页 Computer Engineering and Applications
基金 湖南省科学技术厅科技计划(No.2010FJ4143 No.2010GK3051) 中央高校基本科研业务费专项资金
关键词 压缩感知 随机观测 图像融合 绝对值较大法 compressed sensing randomly observed image fusion absolute value maximum scheme
  • 相关文献

参考文献12

  • 1石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:710
  • 2浦西龙,吕建平.一种基于小波变换的多分辨图像融合算法[J].计算机工程与应用,2007,43(20):65-67. 被引量:10
  • 3Tian Y F,,Qin Y X,Yang J Y,et al.An approach of im-age fusion based on general image quality evaluation[].nd International Congress on Image and Signal Process-ing.2009
  • 4Candes E J.Compressive sampling[].Proceedings of the International Congress of Mathematicians.2006
  • 5Donoho D L.Compressed sensing[].IEEE Trans on In-form Theory.2006
  • 6Luo X Y,Zhang J,Yang J Y,et al.Image fusion in com-pressed sensing[].IEEE International Conference on Im-age Processing.2009
  • 7Divekar A,Ersoy O.Image fusion by compressive sens-ing[].IEEE International Conference on Geoinformatics.2009
  • 8CANDES E,ROMBERGJ.Sparse andincoherence in compressive sampling[].Inverse Problems.2007
  • 9Wakin M,al.An architecture for compressive imaging[].ProcInternational Conference on Image Processing.2006
  • 10Tropp J,Gilbert A.Signal recovery from random measurements via orthogonal matching pursuit[].Transactions on In formation Theory.2007

二级参考文献91

  • 1程英蕾,赵荣椿,李卫华,王兵,江泽涛.基于像素级的图像融合方法研究[J].计算机应用研究,2004,21(5):169-172. 被引量:14
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献718

同被引文献73

  • 1王昕,李玮琳,刘富.小波域CT/MRI医学图像融合新方法[J].吉林大学学报(工学版),2013,43(S1):25-28. 被引量:13
  • 2孙勇,景博.基于支持度的多传感器一致可靠性融合[J].传感技术学报,2005,18(3):537-539. 被引量:38
  • 3楚恒,朱维乐.基于DCT变换的图像融合方法研究[J].光学精密工程,2006,14(2):266-273. 被引量:30
  • 4申晓华,杨国胜,张焕龙.改进的基于区域能量的图像融合方法[J].弹箭与制导学报,2006,26(4):279-281. 被引量:6
  • 5周小林浏大虎,负明凯,刘双全,曹学香.王海鹏.基于压缩感知理论的图像重建算法研究[J].第十三届中国体视学与图像分析学术会议论文集,2013,(9):443-449.
  • 6LI X,QIN S Y. Efficient fusion for infrared and vis- ible images based on compressive sensing principle [J]. IET Image Process, 2011,5(2) .. 141-147.
  • 7DAI Q, SHA W. The physics of compressive sensing and the gradient-based recovery algorithms [EB].2009. http://arxiv, org/abs/0906. 1487.
  • 8CANDES E, ROMBERG J, TAO T. Robust un- certainty principles~ Exact signal reconstruction from highly incomplete frequency information ~J~. IEEE Trans. Inform. Theory, 2006, 56 (2): 589-509.
  • 9DAVID L D. Compressed sensing [J~. IEEE Trans. Inform. Theory, 2006,52(4) ~ 1289-1306.
  • 10WAN T, CANAGARAJAH N, ACHIM A. Com- pressive image fusion [C]. in Proc. Int. Conf. on Image Processing, San Diego, California, U. S. A, 2008:1463-1469.

引证文献8

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部