期刊文献+

基于核主成分分析的热轧带钢头部拉窄分析 被引量:1

Cause analysis of the head width narrowing of hot rolled strips based on the kernel principal component analysis
原文传递
导出
摘要 将核主成分分析方法引入热轧生产过程的监控与诊断中,根据平方预测误差统计量进行生产过程监控,然后利用数据重构和优化的邻域选取策略相结合的方法求出各工艺参数对平方预测误差统计量的作用,分析引起过程异常的主要工艺参数,最后利用仿真和热轧带钢实际生产数据进行实验.结果表明:基于核主成分分析的平方预测误差统计量能较准确诊断过程的异常,并可以找出引起异常的原因,为调整生产过程提供方法支撑,防止次品的出现. A method of production quality monitoring and diagnosis based on the kernel principal component analysis was introduced in the hot rolled strip process.The squared prediction error(SPE) statistic was used in process monitoring.The diagnosis criterion could express the influential importance to SPE,which was computed by the data construction method and the optimal neighbor selection strategy.Finally,simulation data and actual production data were used for model validation.The result shows that the SPE statistic based on the kernel principal component analysis can detect the abnormality and track the causes of faults effectively for adjusting the production process to prevent from substandard products.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2012年第4期437-443,共7页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(51004013) 国家高技术研究发展计划资助项目(2009AA04Z136) 高等学校博士学科点专项科研基金资助项目(20110006110027) 国家"十二五"科技支撑计划资助项目(2012BAF04B02) 中国博士后基金资助项目(20110490294)
关键词 热轧 带钢 产品质量 主成分分析 数据分析 hot rolling strips product quality principal component analysis data analysis
  • 相关文献

参考文献14

二级参考文献44

  • 1苟淑云.生产工艺对低碳铝镇静钢热镀锌钢板性能的影响[J].钢铁,2006,41(2):34-37. 被引量:6
  • 2王丹民,李华德,周建龙,梅兵.热轧带钢力学性能预测模型及其应用[J].北京科技大学学报,2006,28(7):687-690. 被引量:13
  • 3Kano M, Hasebe S, Hashimoto I. A new multivariate statistical process monitoring method using principal component analysis[J]. Computers & chemical engineering, 2001,25:1103-1113.
  • 4Seongkyu Y, John F, MacGregor. Fault diagnosis with multivariate statistical models part I: using steady state fault signatures[J]. Journal of process control, 2001,11:387-400.
  • 5Lee J M, Yoo C K, Choi S W, el at. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical engineering science, 2004,59:223-234.
  • 6Ku W, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and intelligent laboratory systems, 1995,30:179-196.
  • 7Kourti T, MacGregor J F. Multivariate SPC methods for process and product monitoring[J]. J Qual Technol, 1996,28: 409-421.
  • 8Jackson J E. A user's to principle components[M]. New York: Wiley-Inter-Science, 1991.
  • 9Geladi P,Esbensen K.The start and early history of chemometrics:Selected interviews.Part 1[J].Journal of Chemometrics,1990,4:337-354.
  • 10Geladi P,Kowalshi B R.Partial least squares regression:A tutorial[J].Analytica Chimica Acta,1986,185(1):1-17.

共引文献46

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部