期刊文献+

基于时间序列模型的系统最大值指标评定方法 被引量:7

Testing methodology for system maximum-error specification based on timing series model
下载PDF
导出
摘要 提出基于时间序列模型的系统最大值指标评定与测算方法,为某些特殊领域,如航空、航天、国防中长周期及强相关系统的最大值指标评定提供理论依据。首先,选择一个合适的时间序列模型,对系统输出的误差序列建模,使模型能够从总体上跟踪实际系统输出;然后,综合考查模型残差序列与模型预测的输出序列,并应用经典统计学理论完成对系统最大值指标的评定与测算。最后,结合差分自回归滑动平均时间序列模型建模方法给出最大值指标评定方法的应用实例,实验结果表明,该方法是可行的。 A testing methodology for the system maximum-error specification based on the timing series model is presented.It can provide a theoretic basis for the testings of maximum-error specification on long-working and strong correlation systems in some special fields,such as aviation,astronautics and national defenses.Firstly,a proper timing series model is selected,which can model the error series of system outputs and trace the practical system outputs on the integral trend.After taking both the model residuals and predicting outputs into account,the system maximum-error specification is tested and calculated by using the classic statistical theories.To introduce the methodology more directly,a practical sample which is based on an autoregressive integrated moving average timing series modeling methodology is given.The test results show that this methodology is feasible.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第4期839-845,共7页 Systems Engineering and Electronics
基金 教育部博士点新教师基金(200802881012)资助课题
关键词 质量控制与可靠性管理 评定方法 时间序列模型 最大值指标 quality control and reliability management testing methodology timing series model maximum-error specification
  • 相关文献

参考文献3

二级参考文献39

共引文献944

同被引文献65

  • 1李梦奇,白晓军,匡同春,成晓玲,向雄志,黄应钦,雷淑梅.工程技术领域等精度数据异常值判定系统[J].计量技术,2006(3):57-59. 被引量:8
  • 2刘建,刘文金.应用格罗布斯准则判定测量结果中的粗大误差[J].木工机床,2006(2):20-21. 被引量:10
  • 3叶川,伍川辉,张嘉怡.计量测试中异常数据剔除方法比较[J].计量与测试技术,2007,34(7):26-27. 被引量:46
  • 4Cooley D. Extreme value analysis and the study of climate change: a commentary on Wigley 1988[J]. Climate Change, 2009,97(1 - 2) :77 - 83.
  • 5Minguez R, Mendez F J, zaguirre C, et al. Pseudo-optimal pa- rameter selection of non-stationary generalized extreme value models for environmental variables[J]. Environmental Model- ling & Software ,2010,25(12) :1592 - 1607.
  • 6Chen H, Cummins J D. Longevity bond premiums: the extreme value approach and risk cubic pricing[J]. Insurance: Mathemat its and Economics ,2010,46(1) :150 - 161.
  • 7Kogana V, Rind T. Determining critical power equipment inventory using extreme value approach and an auxiliary Poisson model [J]. Computers & Industrial Engineering ,2011,60(1) :25 - 33.
  • 8Prasannavenkatesan R, Przybyla C P, Salajegheh N, et al. Sim- ulated extreme value fatigue sensitivity to inclusions and pores in martensitic gear steels [J]. Engineering Fracture Mechanics, 2011,78(6) :140 - 155.
  • 9Reiss R D, Thomas M. Statistical analysis of extreme values with applications to insurance, finance, hydrology and other fields[M]. 3rd ed. Berlin: Birkhauser Verlag,2007.
  • 10Albert M G, Tank K, Zwiers F W, et al. C-uidelineson analysis of extremes in a changing climate in support of informed decisions for adaptation[M]. Geneva: World Meteorological Organization,2009.

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部