摘要
研究实Banach空间中对称拟向量均衡问题的适定性。定义对称拟向量均衡问题的近似解序列,以此分别给出了对称拟向量均衡问题的适定性和唯一适定性概念。证明在一定条件下,对称拟向量均衡问题的适定性等价于ε→0时,ε-近似解集与解集间的Hausdorff距离的极限为零。唯一适定性则等价于解集非空且ε→0时,ε-近似解集的直径的极限为零。
Abstract.The well-posedness for Symmetric Vector Quasi-equilibrium Problems in real Banach topological vector spaces was studied. The well-posedness and uniquely well-posed for symmetric vector quasi-equilib- rium problems were defined in terms of the conception of the approximating solution sequence. It showed that under suitable conditions,the well-posedness was equivalent to the limit of the Hausdorff distance be- tween e--approximating solution set. The solution set of the symmetric vector quasi-equilibrium problems was found to be zero when ε→0. The necessary and sufficient conditions for the uniquely well-posedness was that the solution set should be nonempty,as well as the limit of the diameter of ε-approximating solu- tion set was zero when ε→0.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2012年第1期5-10,共6页
Journal of Nanchang University(Natural Science)
基金
国家自然科学基金资助项目(11061023)
江西自然科学基金资助项目(2008GZS0072)
江西省研究生创新专项资金自筹项目(YC09B004)
关键词
对称拟向量均衡问题
近似解序列
HAUSDORFF距离
适定性
symmetric vector quasi-equilibrium problems
approximating solution sequence
Hausdorff dis-tance
well-posedness