期刊文献+

对称拟向量均衡问题的适定性

Well-posedness for symmetric vector quasi-equilibrium problems
下载PDF
导出
摘要 研究实Banach空间中对称拟向量均衡问题的适定性。定义对称拟向量均衡问题的近似解序列,以此分别给出了对称拟向量均衡问题的适定性和唯一适定性概念。证明在一定条件下,对称拟向量均衡问题的适定性等价于ε→0时,ε-近似解集与解集间的Hausdorff距离的极限为零。唯一适定性则等价于解集非空且ε→0时,ε-近似解集的直径的极限为零。 Abstract.The well-posedness for Symmetric Vector Quasi-equilibrium Problems in real Banach topological vector spaces was studied. The well-posedness and uniquely well-posed for symmetric vector quasi-equilib- rium problems were defined in terms of the conception of the approximating solution sequence. It showed that under suitable conditions,the well-posedness was equivalent to the limit of the Hausdorff distance be- tween e--approximating solution set. The solution set of the symmetric vector quasi-equilibrium problems was found to be zero when ε→0. The necessary and sufficient conditions for the uniquely well-posedness was that the solution set should be nonempty,as well as the limit of the diameter of ε-approximating solu- tion set was zero when ε→0.
作者 张程 龚循华
机构地区 南昌大学数学系
出处 《南昌大学学报(理科版)》 CAS 北大核心 2012年第1期5-10,共6页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(11061023) 江西自然科学基金资助项目(2008GZS0072) 江西省研究生创新专项资金自筹项目(YC09B004)
关键词 对称拟向量均衡问题 近似解序列 HAUSDORFF距离 适定性 symmetric vector quasi-equilibrium problems approximating solution sequence Hausdorff dis-tance well-posedness
  • 相关文献

参考文献1

二级参考文献6

  • 1Gong X H. Efficiency and Hening Efficiency for Vector Equilibrium Problems [ J ]. Journal of Optimization Theory and Applications ,2001 ( 108 ) : 139 - 154.
  • 2Gong X H, Fu W T, Liu W. Super Efficiency for a Vector Equilibrium in Locally Convex Topological Vector Spaces[ J ]. In : Giannessi, F. ( ed. ) Vector Variational Inequalities and Vector Equilibria: Mahematiacal Theories, Kluwer, Dordrecht, 2000 : 233 - 252.
  • 3Ansari Q H, Oettli W, Schiger, D. A Generalization of Vector Equilibria[J]. Mathematical Methods of Oprations Research, 1997 (46) :47 - 152.
  • 4Fu J Y. Generalized Vector Quasi - equilibrium Problems [J]. Mathematical Methods of Oprations Research, 2000 (52) :57 -64.
  • 5Tan N X. On the Existence of Solutions of Quasivariationgal Inclusion Problems [ J ]. Journal of Optimization Theory and Applications ,2004 ( 123 ) :619 - 638.
  • 6Aubin J P, Ekeland I. Applied Nonlinear Analysis [ M ]. New York : Wiley, 1984.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部