期刊文献+

含奇性拟线性椭圆型方程的特征值问题

Eigenvalue problem for singular quasilinear elliptic equation
下载PDF
导出
摘要 讨论奇性拟线性椭圆型方程的特征值问题,其中,第一特征值对应的特征函数是C1,α(Ω)相关的,而且是正的、单一的、孤立的,且关于非负特征函数是唯一的正特征值。此外,这些性质也被推广到更一般的奇性情况。 The problem of eigenvalues and eigenfunctions of a quasilinear elliptic equation involving singu- larity is studied. The first eigenvalue is associated to a C1,α(Ω) eigenfunction which is positive and unique, that is, the first eigenvalue is simple. Moreover the first eigenvalue is isolated and is the unique positive ei- genvalue associated to a non--negative eigenfunction. Furthermore, these properties are extended to more general situations.
作者 熊辉 金珍
出处 《南昌大学学报(理科版)》 CAS 北大核心 2012年第1期23-28,34,共7页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(10771169) 东莞理工学院青年科学基金资助项目(ZN100026) 南昌工程学院青年基金资助项目(2010KJ025)
关键词 奇性 特征值问题 单一性 孤立性 singularity eigenvalue problem simplicity isolati
  • 相关文献

参考文献1

二级参考文献9

  • 1朱熹平.临界增长拟线性椭圆型方程的非平凡解[J].中国科学:A辑,1988,3:225-237.
  • 2Capozzi A, Fortunato D, Palmieri G. An Existence Result for Nonlineas Elliptic Problems Involving Critical Sobolev Exponent[ J]. Ann Inst H Poincare, 1985(2) :463 -470.
  • 3Ambrosetti A,Struwe M. A Note on the Problem -△u = λu + u│u│^2*-2[J]. Manuse Math,1986,54:373 -379.
  • 4Jannelli E. The Role Played by Space Dimension in Elliptic Critical Problems [ J ]. J Differential Equations, 1999, 156:407 - 426.
  • 5Yinbing D. Existence of Multiple Positive Solutions for -△u=λu+uN+2√N-2+μf(x) [J]. Acta Mathematics Sinica, New (Series) , 1993,9 ( 3 ) :311 - 320
  • 6Chunlei T,Xingping W. Existence and Multiplicity of Solutions of Semilinear Elliptic Equations [ J]. J Math Anal Appl,2001,256 : 1 - 12.
  • 7Lions P L. The Concentration - Compactness Principle in the Calculus of Variations [ J ]. The Limit Case (Ⅰ), Revista Math Ibero,1985(1) :145 -201.
  • 8Strauss W A. Existence of Solitary Waves in Higher Dimensions[ J]. Comm Math Phys, 1977,55 : 149 - 162.
  • 9Brezis H, Lieb E H. A Relation Between Pointwise Convergence of Functions and Convergence of Functionals [ J]. Proc Amer Math Soc, 1983,88:486 -490.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部