摘要
设Pn是具有n个顶点的路,Ψ*(4,n)表示把2P3的两个2度点分别与Pn的两个1度点重迭后得到的图,Sδ*(δ=rm+1)表示把rPm+1的每个分支的一个1度点重迭在一起得到的图。用PnSδ*表示把Pn的n个顶点与nSδ*的每一个分支的r度顶点依次重迭后得到的图,并用Ψ*S*(4δ,nδ)表示把图Ψ*(4,n)的n+4个顶点与(n+4)Sδ*的每一个分支的r度顶点依次重迭后得到的图。运用图的伴随多项式的性质,证明了图PnSδ*∪tSδ*与Ψ*S*(4δ,nδ)∪tSδ*的伴随多项式的因式分解定理,进而得到了这类图的补图的色等价图的结构特征。
Assume P. to be the path with n vertices and Ψ* (4,n) be the graph consisting of 2P3 and P. by coinciding two vertices of degree 2P3 of with two vertices of degree 1 of Pn, respectively. Sδ*(δ=rm+1) Use to denote the graph, consisting of rPm+1 by coinciding one vertex of degree 1 of each component of rPm+1. The graph,consisting of Pn and nS; by coinciding each vertex of Pn with the vertex of degree r of every component of nS_δ^*,respectively,was labelled as PnSδ*. The symbol Ψ*S^*(4δ,nδ) was applied to ad- dress the graph obtained from Ψ^* (4,n) and (n+4)Sδ* by coinciding each vertex ofΨ^*(4,n) with the vertex of degree r of every component of Ψ^* (4,n),respectively. By adopting the properties of adjoint polynomials. We proved that the factorization theorem of adjoint polynomials of two kinds of graphs PnSδ*∪tSδ*; and Ψ*S*(4δ, nδ) ∪tSδ*(n = 2^1 q- 1). Furthermore, the structural characteristics of chromatically equivalent graphs of their complements were obtained.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2012年第1期29-34,共6页
Journal of Nanchang University(Natural Science)
基金
国家自然科学基金资助项目(10671008)
关键词
色多项式
伴随多项式
因式分解
色等价性
chromatic polynomial
adjoint polynomials
factorization
chromatically equivalent graph