期刊文献+

新型的图像检索最优实验设计算法 被引量:1

Novel Optimal Experimental Design Algorithm for Image Retrieval
下载PDF
导出
摘要 大部分现有的最优实验设计方法是基于线性回归或拉普拉斯正则最小二乘模型(LapRLS)的。提出一种基于二阶Hessian能并具有流形学习能力的主动学习算法,该算法选择那些能使Hessian正则回归模型的参数协方差矩阵最小化的样本作为最优样本,可以克服LapRLS的依赖特定常量及缺乏推算能力等缺点。基于内容的图像检索实验证明了该方法的有效性。 Most of the existing optimal experimental design(OED) methods are based on either linear regression model or Laplacian regularized least square(LapRLS) model.This paper proposes a new active learning algorithm based on the second-order Hessian energy,which has the manifold learning capability.The algorithm selects those optimal samples which minimize the parameter covariance matrix of the Hessian regularized regression model,and overcomes the drawbacks of LapRLS.The experimental results on content-based image retrieval have demonstrated the effectiveness of the proposed approach.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第2期269-273,共5页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60702072) 中央高校基本业务费(ZYGX2009X012) 四川省应用基础研究项目(2010JY0001)
关键词 图像检索 LapRLS 流形学习 最优实验设计 image retrieval LapRLS manifold learning optimal experimental design
  • 相关文献

参考文献1

二级参考文献11

  • 1张振跃,查宏远.线性低秩逼近与非线性降维[J].中国科学(A辑),2005,35(3):273-285. 被引量:8
  • 2何力,张军平,周志华.基于放大因子和延伸方向研究流形学习算法[J].计算机学报,2005,28(12):2000-2009. 被引量:24
  • 3Tenenbaum J,de Silva V,Langford J.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(12):2319-2323
  • 4Belkin M,Niyogi P.Laplacian eigenmaps and spectral techniques for embedding and clustering[C] //Proceedings of Advances in Neural Information Processing Systems 14.Cambridge,MA:MIT Press,2002:585-591
  • 5Lu Ke,et al.Image retrieval using dimensionality reduction[C] //Proceedings of International Conference on Computational and Information Sciences,Shanghai,2004:775-781
  • 6Lu Ke,He Xiaofei.Image retrieval based on incremental subspace learning[J].Pattern Recognition.2005,38(11):2047-2054
  • 7He Xiaofei,Cai Deng,Min Wanli.Statistical and computational analysis of locality preserving projection[C] //Proceedings of the 22nd International Conference on Machine Learning,Bonn,2005:281-288
  • 8Ishikawa Y,Subranmanya R,Faloutsos C.MindReader:query databases through multiple examples[C] //Proceedings of the 24th International Conference on Very Large Databases,New York,1998:218-227
  • 9Rui Y,Huang T S,Mehrotra S.Content-based image retrieval with relevance feedback in MARS[C] //Proceedings of IEEE International Conference on Image Processing.New York:IEEE Press,1997,2:815-818
  • 10He Xiaofei,Niyogi P.Locality preserving projections[C] //Proceedings of Advances in Neural Information Processing Systems 16.MA:Cambridge,MIT Press,2004:153-160

共引文献7

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部