期刊文献+

Effect of milling time on microstructure of Ti35Nb2.5Sn/10HA biocomposite fabricated by powder metallurgy and sintering 被引量:1

球磨时间对粉末冶金制备Ti35Nb2.5Sn/10HA生物复合材料微观组织的影响(英文)
下载PDF
导出
摘要 A new β-Ti based Ti35Nb2.5Sn/10 hydroxyapitite(HA) biocompatible composite was fabricated by mechanical milling and pulsed current activated sintering(PCAS).The microstructures of Ti35Nb2.5Sn/10HA powder particles and composites sintered from the milled powders were studied.Results indicated that α-Ti phase began to transform into β-Ti phase after the powders were mechanically milled for 8 h.After mechanical milling for 12 h,α-Ti completely transformed into β-Ti phase,and the ultra fine Ti35Nb2.5Sn/10HA composite powders were obtained.And ultra fine grain sized Ti35Nb2.5Sn/10HA sintered composites were obtained by PCAS.The hardness and relative density of the sintered composites both increased with increasing the ball milling time. 采用高能机械球磨和脉冲电流活化烧结方法制备了一种新型的β-钛合金基体的Ti35Nb2.5Sn/10HA生物复合材料。研究了机械球磨不同时间的Ti35Nb2.5Sn10HA粉体以及烧结样品的微观组织。结果表明:经机械球磨8h后,粉体中的α-钛开始向β-钛转化。当球磨时间达到12h时,球磨粉体中的α-钛相完全转化为β-钛相,而且得到超细尺寸的复合粉体。用球磨12h的粉末烧结制备的复合材料具有超细晶粒结构,烧结得到的复合材料的硬度和相对密度都随着球磨时间的延长而增加。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期608-612,共5页 中国有色金属学报(英文版)
基金 Project(ZJY0605-02) supported by the Natural Science Foundation of Heilongjiang Province,China Project(310703002) supported by the National Research Foundation of Korea(NRF) grant funded Korea Government
关键词 Ti35Nb2.5Sn/10HA ultrafine grain powder metallurgy milling time Ti35Nb2.5Sn/10HA 超细晶粒 粉末冶金 球磨时间
  • 相关文献

参考文献15

  • 1KIM H S,LIM S H,YEO I D,KIM W Y. Stress-induced martensitic transformation of metastable β-titanium alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2007.322-325.
  • 2KOIBE M,CAI Z,FUJII H,BREZNER M OKANE T. Corrosion behavior of cast titanium with reduced surface reaction layer made by a face-coating method[J].Biomaterials,2003.4541-4549.
  • 3OKAZAKI Y,ITO Y,KYO K,TATEISI T. Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and AI[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1996.138-147.
  • 4HE G,HAGIWARA M. Ti alloy design strategy for biomedical applications[J].Materials Science and Engineering C:Biomimetic and Supramolecular Systems,2006.14-19.
  • 5KOVACS P,DAVIDSON J A. The electrochemical behavior of a new titanium alloy with superior biocompatibility[A].Warrendale:TMS,1993.2705-2712.
  • 6AHMED T,LONG M,SILVERTRI J,RUIZ C,RACKET H. A new low modulus,biocompatible titanium alloy[A].London,UK:The lnst Mater,1995.1760-1767.
  • 7DAISUKE K,MITSUOM N,MASAHIKO M,YOSIHISA K,TOSHIAKI Y. Design and mechanical properties of new.β type titanium alloys for implant materials[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1998.244-249.
  • 8LONG M,RACK H J. Titanium alloys in total joint replacement-A materials science perspective[J].Biomaterials,1998,(18):1621-1639.doi:10.1016/S0142-9612(97)00146-4.
  • 9HANADA S,OZAKI T,TAKAHASHI E,WATANABE S YOSHIMI K ABUMIYA T. Composition dependence of Young's modulus in beta titanium binary alloys[J].Materials Science Forum,2003.3103-3108.
  • 10MATUSMOTO H,WATANABE S,HANADA S. Beta TiNbSn alloys with low Young's modulus and high strength[J].Materials Transactions,2005.1070-1078.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部