期刊文献+

镍黄铁矿电化学生物氧化过程的分解机理(英文) 被引量:3

Decomposition mechanism of pentlandite during electrochemical bio-oxidation process
下载PDF
导出
摘要 应用表面粘附和没有粘附Acidithiobacillus ferrooxidans的镍黄铁矿粉末微电极进行电化学测试,以说明镍黄铁矿氧化分解的机理。循环伏安CV结果显示,在-0.2V的低电位区域,在镍、铁离子析出时镍黄铁矿转变为中间相Fe4.5-yNi4.5-xS8-z;当电位在-0.2V到0.2V区间时,有不稳定的紫硫镍矿Fe3Ni3S4和FeNi2S4形成并在表面伴有元素硫的产生;当电位增加到0.2V以上时,不稳定相将全部分解;在高电位0.7V时,析出的亚铁离子被氧化为高铁离子。嗜酸氧化亚铁硫杆菌Acidithiobacillus ferrooxidans的存在使峰电位增高,反应起始电位负移,并对表面形成的元素硫有氧化去除作用。这一过程可通过-0.75到-0.5V电位区间发生的的还原反应证实。生物浸出和电化学实验结果均表明当pH<2时溶液酸度的增加对氧化过程有轻度的阻碍作用。 Electrochemical measurements were carried out to elucidate decomposition mechanism of pentlandite using modified powder microelectrode with Acidithiobacillus ferrooxidans attached or without on the mineral powder surface.Cyclic voltammetry(CV) results show that at a low potential of about-0.2 V(vs SCE),the pentlandite was transformed to an intermediated phase like Fe4.5-yNi4.5-xS8-z when Fe and Ni ions were evacuated from mineral lattice;when the potential was changed from-0.2 V to 0.2 V,the unstable violarite(Fe3Ni3S4) and FeNi2S4 were formed which was accompanied by element sulfur formed on the mineral surface;when the potential increased over 0.2 V,the unstable intermediated phase decomposed entirely;at a higher potential of 0.7 V,the evacuated ferrous ion was oxidized to ferric ion.The presence of Acidithiobacillus ferrooxidans made the oxidation peak current increase with initial peak potential negatively moving,and the bacteria also contributed to the sulfur removing from mineral surface,which was demonstrated by the reduction characteristic at potential ranging from-0.75 to-0.5 V.Leaching experiments and electrochemical results show that the solution acidity increasing when pH2 may impede the oxidation process slightly.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期731-739,共9页 中国有色金属学报(英文版)
基金 Project(20876014) supported by the National Natural Science Foundation of China
关键词 镍黄铁矿 嗜酸氧化亚铁硫杆菌 生物浸取 改性微电极 pentlandite Acidthiobacillus ferrooxidans bioleaching powder modified microelectrode
  • 相关文献

参考文献37

  • 1CAMERON R A,LASTRA R,MORTAZAVI S,BEDARD P L MORIN L DOUGLAS G W KENNEDY K J. Bioleaching of a low-grade ultramafic nickel sulphide ore in stirred-tank reactors at elevated pH[J].Hydrometallurgy,2009,(3-4):213-220.
  • 2RJEKKOLA-VANHANEN M. Talvivaara black schist bioheapleaching demonstration plant[J].Advances in Materials Research,2007.30-33.
  • 3QIN W Q,ZHEN S J,YAN Z Q,CAMPBELL M WANG J LIU K ZHANG Y S. Heap bioleaching a low grade nickel-bearing sulphide ore containing high levels magnesium as olivine,chlorite and antigorite[J].Hydrometallurgy,2009,(1-2):58-65.
  • 4AHONEN L,TUOVINEN O H. Bacterial leaching of complex sulfide ore samples in bench-scale column reactors[J].Hydrometallurgy,1995,(01):1-21.
  • 5PLUMB J J,MUDDLE R,FRANZMANN P D. Effect of pH on rates of iron and sulphur oxidation by bioleaching organisms[J].Minerals Engineering,2008,(01):76-82.
  • 6HANSFORD G S,VARGAS T. Chemical and electrochemical basis of bioleaching processes[J].Hydrometallurgy,2001,(2-3):135-145.
  • 7TRIBUTSCH H. Direct versus indirect bioleaching[J].Hydrometallurgy,2001,(2-3):177-185.doi:10.1016/S0304-386X(00)00181-X.
  • 8MOEHL T,KUNST M,W(U)NSCH F,TRIBUTSCH H. Consistency of photoelectrochemistry and photoelectrochemical microwave reflection demonstrated with p-and n-type layered semiconductors like MoS2[J].Journal of Electroanalytical Chemistry,2007,(01):31-41.
  • 9C(O)MEZ C,FIGUEROA M,MU(N)OZ J,BL(A)ZQUEZ M L. Electrochemistry of chalcopyrite[J].Hydrometallurgy,1996,(1-3):331-344.
  • 10LU Z Y,JEFFREY M I,LAWSON F. An electrochemical study of the effect of chloride ions on the dissolution of chalcopyrite in acidic solutions[J].Hydrometallurgy,2000,(02):145-155.

同被引文献49

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部