摘要
综合利用模糊技术、神经网络与小波技术,提出一种主机入侵预测模型FWNN-IP。将系统调用按危险度进行分类,并为高危险度的系统调用赋予较高的值,利用模糊化后的系统调用短序列分析程序(进程)的踪迹,达到入侵预测的目的。实验结果表明,FWNN-IP模型能够及时预测程序(进程)中的异常,采取更加积极主动的预防措施抵制入侵行为。
This paper proposes a host intrusion prediction model named Fuzzy Wavelet Neural Network Intrusion Prediction(FWNN-IP) by using fuzzy methodology, neural network and wavelet technology. System calls are classified according to their dangerous degrees and higher dangerous system calls are assigned greater number. Programs(processes) traces are analyzed by applying fuzzed short sequences of system calls, and the aim of intrusion prediction can be achieved. Experimental results show that FWNN-IP can predict abnormal behaviors of programs(processes) more quickly, and takes more active action to protect host.
出处
《计算机工程》
CAS
CSCD
2012年第8期89-91,共3页
Computer Engineering
基金
天津市"十一五"人才引进计划基金资助项目(20090047)
关键词
入侵预测
入侵检测
模糊神经网络
小波神经网络
系统调用
intrusion prediction
intrusion detection
fuzzy neural network
wavelet neural network
system call